6,074 research outputs found

    Self-organizing Coordination of Multi-Agent Microgrid Networks

    Get PDF
    abstract: This work introduces self-organizing techniques to reduce the complexity and burden of coordinating distributed energy resources (DERs) and microgrids that are rapidly increasing in scale globally. Technical and financial evaluations completed for power customers and for utilities identify how disruptions are occurring in conventional energy business models. Analyses completed for Chicago, Seattle, and Phoenix demonstrate site-specific and generalizable findings. Results indicate that net metering had a significant effect on the optimal amount of solar photovoltaics (PV) for households to install and how utilities could recover lost revenue through increasing energy rates or monthly fees. System-wide ramp rate requirements also increased as solar PV penetration increased. These issues are resolved using a generalizable, scalable transactive energy framework for microgrids to enable coordination and automation of DERs and microgrids to ensure cost effective use of energy for all stakeholders. This technique is demonstrated on a 3-node and 9-node network of microgrid nodes with various amounts of load, solar, and storage. Results found that enabling trading could achieve cost savings for all individual nodes and for the network up to 5.4%. Trading behaviors are expressed using an exponential valuation curve that quantifies the reputation of trading partners using historical interactions between nodes for compatibility, familiarity, and acceptance of trades. The same 9-node network configuration is used with varying levels of connectivity, resulting in up to 71% cost savings for individual nodes and up to 13% cost savings for the network as a whole. The effect of a trading fee is also explored to understand how electricity utilities may gain revenue from electricity traded directly between customers. If a utility imposed a trading fee to recoup lost revenue then trading is financially infeasible for agents, but could be feasible if only trying to recoup cost of distribution charges. These scientific findings conclude with a brief discussion of physical deployment opportunities.Dissertation/ThesisDoctoral Dissertation Systems Engineering 201

    Towards transactive energy systems: An analysis on current trends

    Get PDF
    This paper presents a comprehensive analysis on the latest advances in transactive energy systems. The main contribution of this work is centered on the definition of transactive energy concepts and how such systems can be implemented in the smart grid paradigm. The analyzed works have been categorized into three lines of research: (i) transactive network management; (ii) transactive control; and (iii) peer-to-peer markets. It has been found that most of the current approaches for transactive energy are available as a model, lacking the real implementation to have a complete validation. For that purpose, both scientific and practical aspects of transactive energy should be studied in parallel, implementing adequate simulation platforms and tools to scrutiny the results.This work has received funding from the European Union's Horizon 2020 research and innovation programme under project DOMINOES (grant agreement No. 771066) and from FEDER Funds through COMPETE program and from National Funds through FCT under the project UID/EEA/00760/2019.info:eu-repo/semantics/publishedVersio

    Blockchain-based solution for energy demand-side management of residential buildings

    Get PDF
    Abstract Smart homes, connected through a network, can optimize the energy consumption and general load shape of their area. In this work, a blockchain-based smart solution is presented for demand-side management of residential buildings in a neighborhood to improve Peaks to Average Ratios (PAR) of power load, reduce energy consumption, and increase the thermal comfort of occupants by modeling heating, illumination, and appliance systems. For real-time power and temperature monitoring of the neighborhood, a transient numerical physical model has been developed. The simulator has been validated with data measured from a building in Northern Italy. Then, a neighborhood with 2,000 households has been modeled for different occupancy patterns, initial values, and boundary conditions. Two different control scenarios, namely basic and smart, have been considered. In the basic scenario, everything is managed by occupants except the boiler, which is controlled by the indoor temperature of the home. Instead, in the smart scenario, a blockchain-based network has been introduced for buildings to exchange a parameter called the Probability of the Next Hour (PNH). Ethereum Solidity has been deployed for smart contract development in the blockchain. The results show that using blockchain-connected smart controllers aimed at demand-side management can improve PAR, comfort level, and energy efficiency of buildings, which can bring about CO2 reduction on an urban and even global scale

    Design and Modeling for DC Nanogrids

    Get PDF
    Smart grids were constructed as a means of communication to the electric grid through computer and other information technologies. This line of communication acts as gauge for a more accurate reading of power consumed. A nano grid is a model version of a smart grid with the ability to function as separate power generator. Such feature allows for this grid to power single loads and apply for special applications. A DC-DC converter was designed to apply to a nano grid which is a form of a smart grid. The converter was a single-input-multi-output converter which is taking one dc voltage and applying it to two dc output voltages. This boost converter takes the inputs and increases its voltages, leading to the outputs respectively. The nano grid utilizes this proposed converter to carry out its special characteristics. Procedures carried out in this research showed the success of the converter. Further steps include the designing of a ring and radial architecture nanogrid to form a microgrid. A comparison of results are made showing the efficiency and reliability of ring architecture layout microgrids Doing this creates a more complex system, and provide relief to multiple sources to prevent outages

    Decentralized Greedy-Based Algorithm for Smart Energy Management in Plug-in Electric Vehicle Energy Distribution Systems

    Get PDF
    Variations in electricity tariffs arising due to stochastic demand loads on the power grids have stimulated research in finding optimal charging/discharging scheduling solutions for electric vehicles (EVs). Most of the current EV scheduling solutions are either centralized, which suffer from low reliability and high complexity, while existing decentralized solutions do not facilitate the efficient scheduling of on-move EVs in large-scale networks considering a smart energy distribution system. Motivated by smart cities applications, we consider in this paper the optimal scheduling of EVs in a geographically large-scale smart energy distribution system where EVs have the flexibility of charging/discharging at spatially-deployed smart charging stations (CSs) operated by individual aggregators. In such a scenario, we define the social welfare maximization problem as the total profit of both supply and demand sides in the form of a mixed integer non-linear programming (MINLP) model. Due to the intractability, we then propose an online decentralized algorithm with low complexity which utilizes effective heuristics to forward each EV to the most profitable CS in a smart manner. Results of simulations on the IEEE 37 bus distribution network verify that the proposed algorithm improves the social welfare by about 30% on average with respect to an alternative scheduling strategy under the equal participation of EVs in charging and discharging operations. Considering the best-case performance where only EV profit maximization is concerned, our solution also achieves upto 20% improvement in flatting the final electricity load. Furthermore, the results reveal the existence of an optimal number of CSs and an optimal vehicle-to-grid penetration threshold for which the overall profit can be maximized. Our findings serve as guidelines for V2G system designers in smart city scenarios to plan a cost-effective strategy for large-scale EVs distributed energy management

    Blockchain and internet of things for electrical energy decentralization: A review and system architecture

    Get PDF
    Decentralization in electrical power grids has gained increasing importance, especially in the last two decades, since transmission system operators (TSO), distribution system operators (DSO) and consumers are more aware of energy efficiency and energy sustainability issues. Therefore, globally, due to the introduction of energy production technologies near the consumers, in residential and industrial sectors, new scenarios of decentralized energy production (DEP) are emerging. To guarantee an adequate power management in the electrical power grids, incorporating producers, consumers, and producers-consumers, commonly designated as prosumers together, it is important to adopt intelligent systems and platforms that allow the provision of information on energy consumption and production in real time, as well as for obtaining the price for the sale and purchase of energy. In this research the literature is analysed to identify the appropriate solutions to implement a decentralized electrical power grid based on sensors, blockchain and smart contracts, evaluating the current state of the art and pilot projects already in place. A conceptual model for a power grid model is presented, with renewable energy production, combining Internet of Things (IoT), blockchain and smart contracts.A descentralização nas redes elétricas ganhou importância crescente, especialmente nas últimas duas décadas, uma vez que os operadores da rede de transporte (ORT), operadores da rede de distribuição (ORD) e consumidores estão mais conscientes das questões de eficiência energética e sustentabilidade energética. Globalmente, devido à introdução de tecnologias de produção de energia junto dos consumidores, nos setores residencial e industrial, estão a surgir novos cenários de produção de energia descentralizada. Para garantir uma adequada gestão de energia nas redes elétricas, integrando produtores, consumidores e produtores-consumidores, vulgarmente designados por prosumers, é importante adotar sistemas e plataformas inteligentes que permitam fornecer informações sobre consumo e produção de energia em tempo real, bem como para obter o preço de compra e venda de energia. Nesta pesquisa, a literatura é analisada para identificar as soluções adequadas para implementar uma rede elétrica descentralizada baseada em sensores, blockchain e contratos inteligentes, avaliando o estado da arte atual e projetos piloto já em curso. É apresentado um modelo conceptual para um modelo de rede elétrica, com produção de energia renovável, combinando Internet das Coisas (IoT), blockchain e contratos inteligentes

    Privacy-Preserving Transactive Energy Management for IoT-aided Smart Homes via Blockchain

    Full text link
    With the booming of smart grid, The ubiquitously deployed smart meters constitutes an energy internet of things. This paper develops a novel blockchain-based transactive energy management system for IoT-aided smart homes. We consider a holistic set of options for smart homes to participate in transactive energy. Smart homes can interact with the grid to perform vertical transactions, e.g., feeding in extra solar energy to the grid and providing demand response service to alleviate the grid load. Smart homes can also interact with peer users to perform horizontal transactions, e.g., peer-to-peer energy trading. However, conventional transactive energy management method suffers from the drawbacks of low efficiency, privacy leakage, and single-point failure. To address these challenges, we develop a privacy-preserving distributed algorithm that enables users to optimally manage their energy usages in parallel via the smart contract on the blockchain. Further, we design an efficient blockchain system tailored for IoT devices and develop the smart contract to support the holistic transactive energy management system. Finally, we evaluate the feasibility and performance of the blockchain-based transactive energy management system through extensive simulations and experiments. The results show that the blockchain-based transactive energy management system is feasible on practical IoT devices and reduces the overall cost by 25%.Comment: To appea
    corecore