161 research outputs found

    Shinren : Non-monotonic trust management for distributed systems

    Get PDF
    The open and dynamic nature of modern distributed systems and pervasive environments presents significant challenges to security management. One solution may be trust management which utilises the notion of trust in order to specify and interpret security policies and make decisions on security-related actions. Most trust management systems assume monotonicity where additional information can only result in the increasing of trust. The monotonic assumption oversimplifies the real world by not considering negative information, thus it cannot handle many real world scenarios. In this paper we present Shinren, a novel non-monotonic trust management system based on bilattice theory and the anyworld assumption. Shinren takes into account negative information and supports reasoning with incomplete information, uncertainty and inconsistency. Information from multiple sources such as credentials, recommendations, reputation and local knowledge can be used and combined in order to establish trust. Shinren also supports prioritisation which is important in decision making and resolving modality conflicts that are caused by non-monotonicity

    Datalog± Ontology Consolidation

    Get PDF
    Knowledge bases in the form of ontologies are receiving increasing attention as they allow to clearly represent both the available knowledge, which includes the knowledge in itself and the constraints imposed to it by the domain or the users. In particular, Datalog ± ontologies are attractive because of their property of decidability and the possibility of dealing with the massive amounts of data in real world environments; however, as it is the case with many other ontological languages, their application in collaborative environments often lead to inconsistency related issues. In this paper we introduce the notion of incoherence regarding Datalog± ontologies, in terms of satisfiability of sets of constraints, and show how under specific conditions incoherence leads to inconsistent Datalog ± ontologies. The main contribution of this work is a novel approach to restore both consistency and coherence in Datalog± ontologies. The proposed approach is based on kernel contraction and restoration is performed by the application of incision functions that select formulas to delete. Nevertheless, instead of working over minimal incoherent/inconsistent sets encountered in the ontologies, our operators produce incisions over non-minimal structures called clusters. We present a construction for consolidation operators, along with the properties expected to be satisfied by them. Finally, we establish the relation between the construction and the properties by means of a representation theorem. Although this proposal is presented for Datalog± ontologies consolidation, these operators can be applied to other types of ontological languages, such as Description Logics, making them apt to be used in collaborative environments like the Semantic Web.Fil: Deagustini, Cristhian Ariel David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Martinez, Maria Vanina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Falappa, Marcelo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Simari, Guillermo Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentin

    A Context-Oriented Extension of F#

    Get PDF
    Context-Oriented programming languages provide us with primitive constructs to adapt program behaviour depending on the evolution of their operational environment, namely the context. In previous work we proposed ML_CoDa, a context-oriented language with two-components: a declarative constituent for programming the context and a functional one for computing. This paper describes the implementation of ML_CoDa as an extension of F#.Comment: In Proceedings FOCLASA 2015, arXiv:1512.0694

    A Two-Component Language for Adaptation: Design, Semantics, and Program Analysis

    Get PDF

    Hybrid Architecture to Support Context‐Aware Systems

    Get PDF
    Any system that is said to be context‐aware is capable of monitoring continuously the surrounding environment, that is, capable of prompt reaction to events and changing conditions of the environment. The main objective of a context‐aware system is to be continuously recognizing the state of the environment and the users present, in order to adjust the environment to an ideal state and to provide personalized information and services to users considering the user profile. In this chapter, we describe an architecture that relies on the incorporation of intelligent multi‐agent systems (MAS), sensor networks, mobile sensors, actuators, Web services and ontologies. We describe the interaction of these technologies into the architecture aiming at facilitating the construction of context‐aware systems

    Subset reasoning for event-based systems

    Get PDF
    In highly dynamic domains such as the Internet of Things (IoT), smart industries, smart manufacturing, pervasive health or social media, data is being continuously generated. By combining this generated data with background knowledge and performing expressive reasoning upon this combination, meaningful decisions can be made. Furthermore, this continuously generated data typically originates from multiple heterogeneous sources. Ontologies are ideal for modeling the domain and facilitates the integration of heterogeneous produced data with background knowledge. Furthermore, expressive ontology reasoning allows to infer implicit facts and enables intelligent decision making. The data produced in these domains is often volatile. Time-critical systems, such as IoT Nurse Call systems, require timely processing of the produced IoT data. However, there is still a mismatch between volatile data and expressive ontology reasoning, since the incoming data frequency is often higher than the reasoning time. For this reason, we present an approximation technique that allows to extract a subset of data to speed-up the reasoning process. We demonstrate this technique in a Nurse Call proof of concept where the locations of the nurses are tracked and the most suited nurse is selected when the patient launches a call and in an extension of an existing benchmark. We managed to speed up the reasoning process up to 10 times for small datasets and up to more than 1000 times for large datasets
    corecore