3,635 research outputs found

    Spectral Characterization of a Prototype SFA Camera for Joint Visible and NIR Acquisition

    No full text
    International audienceMultispectral acquisition improves machine vision since it permits capturing more information on object surface properties than color imaging. The concept of spectral filter arrays has been developed recently and allows multispectral single shot acquisition with a compact camera design. Due to filter manufacturing difficulties, there was, up to recently, no system available for a large span of spectrum, i.e., visible and Near Infra-Red acquisition. This article presents the achievement of a prototype of camera that captures seven visible and one near infra-red bands on the same sensor chip. A calibration is proposed to characterize the sensor, and images are captured. Data are provided as supplementary material for further analysis and simulations. This opens a new range of applications in security, robotics, automotive and medical fields

    Physical Investigation of the Potentially Hazardous Asteroid (144898) 2004 VD17

    Full text link
    In this paper we present the observational campaign carried out at ESO NTT and VLT in April and May 2006 to investigate the nature and the structure of the Near Earth Object (144898) 2004 VD17. In spite of a great quantity of dynamical information, according to which it will have a close approach with the Earth in the next century, the physical properties of this asteroid are largely unknown. We performed visible and near--infrared photometry and spectroscopy, as well as polarimetric observations. Polarimetric and spectroscopic data allowed us to classify 2004 VD17 as an E-type asteroid. A good agreement was also found with the spectrum of the aubrite meteorite Mayo Belwa. On the basis of the polarimetric albedo (p_v=0.45) and of photometric data, we estimated a diameter of about 320 m and a rotational period of about 2 hours. The analysis of the results obtained by our complete survey have shown that (144898) 2004 VD17 is a peculiar NEO, since it is close to the breakup limits for fast rotator asteroids, as defined by Pravec and Harris (2000). These results suggest that a more robust structure must be expected, as a fractured monolith or a rubble pile in a "strength regime" (Holsapple 2002).Comment: 32 pages, 7 figure, paper accepted for publication in Icaru

    SPHERE: the exoplanet imager for the Very Large Telescope

    Get PDF
    Observations of circumstellar environments to look for the direct signal of exoplanets and the scattered light from disks has significant instrumental implications. In the past 15 years, major developments in adaptive optics, coronagraphy, optical manufacturing, wavefront sensing and data processing, together with a consistent global system analysis have enabled a new generation of high-contrast imagers and spectrographs on large ground-based telescopes with much better performance. One of the most productive is the Spectro-Polarimetic High contrast imager for Exoplanets REsearch (SPHERE) designed and built for the ESO Very Large Telescope (VLT) in Chile. SPHERE includes an extreme adaptive optics system, a highly stable common path interface, several types of coronagraphs and three science instruments. Two of them, the Integral Field Spectrograph (IFS) and the Infra-Red Dual-band Imager and Spectrograph (IRDIS), are designed to efficiently cover the near-infrared (NIR) range in a single observation for efficient young planet search. The third one, ZIMPOL, is designed for visible (VIR) polarimetric observation to look for the reflected light of exoplanets and the light scattered by debris disks. This suite of three science instruments enables to study circumstellar environments at unprecedented angular resolution both in the visible and the near-infrared. In this work, we present the complete instrument and its on-sky performance after 4 years of operations at the VLT.Comment: Final version accepted for publication in A&

    Minimizing Strong Telluric Absorption in Near Infra-red Stellar Spectra

    Full text link
    We have obtained high resolution spectra (R = 25000) of an A star over varying airmass to determine the effectiveness of telluric removal in the limit of high signal to noise. The near infra-red line HeI at 2.058 microns, which is a sensitive indicator of physical conditions in massive stars, supergiants, HII regions and YSOs, resides among pressure broadened telluric absorption from carbon dioxide and water vapor that varies both in time and with observed airmass. Our study shows that in the limit of bright stars at high resolution, accuracies of 5% are typical for high airmass observations (greater than 1.9), improving to a photon-limited accuracy of 2% at smaller airmasses (less than 1.15). We find that by using the continuum between telluric absorption lines of a ro-vibrational fan a photon-limited 1% accuracy is achievable.Comment: 14 pages, 7 figures. Accepted for publication in PAS

    The Dark UNiverse Explorer (DUNE): Proposal to ESA's Cosmic Vision

    Full text link
    The Dark UNiverse Explorer (DUNE) is a wide-field space imager whose primary goal is the study of dark energy and dark matter with unprecedented precision. For this purpose, DUNE is optimised for the measurement of weak gravitational lensing but will also provide complementary measurements of baryonic accoustic oscillations, cluster counts and the Integrated Sachs Wolfe effect. Immediate auxiliary goals concern the evolution of galaxies, to be studied with unequalled statistical power, the detailed structure of the Milky Way and nearby galaxies, and the demographics of Earth-mass planets. DUNE is an Medium-class mission which makes use of readily available components, heritage from other missions, and synergy with ground based facilities to minimise cost and risks. The payload consists of a 1.2m telescope with a combined visible/NIR field-of-view of 1 deg^2. DUNE will carry out an all-sky survey, ranging from 550 to 1600nm, in one visible and three NIR bands which will form a unique legacy for astronomy. DUNE will yield major advances in a broad range of fields in astrophysics including fundamental cosmology, galaxy evolution, and extrasolar planet search. DUNE was recently selected by ESA as one of the mission concepts to be studied in its Cosmic Vision programme.Comment: Accepted in Experimental Astronom

    Radio and IR study of the massive star-forming region IRAS 16353-4636

    Get PDF
    Context. With the latest infrared surveys, the number of massive protostellar candidates has increased significantly. New studies have posed additional questions on important issues about the formation, evolution, and other phenomena related to them. Complementary to infrared data, radio observations are a good tool to study the nature of these objects, and to diagnose the formation stage. Aims. Here we study the far-infrared source IRAS 16353-4636 with the aim of understanding its nature and origin. In particular, we search for young stellar objects (YSOs), possible outflow structure, and the presence of non-thermal emission. Methods. Using high-resolution, multi-wavelength radio continuum data obtained with the Australia Telescope Compact Array, we image IRAS 16353-4636 and its environment from 1.4 to 19.6 GHz, and derive the distribution of the spectral index at maximum angular resolution. We also present new JHKs photometry and spectroscopy data obtained at ESO NTT. 13 CO and archival HI line data, and infrared databases (MSX, GLIMPSE, MIPSGal) are also inspected. Results. The radio continuum emission associated with IRAS 16353-4636 was found to be extended (~10 arcsec), with a bow-shaped morphology above 4.8 GHz, and a strong peak persistent at all frequencies. The NIR photometry led us to identify ten near-IR sources and classify them according to their color. We used the HI line data to derive the source distance, and analyzed the kinematical information from the CO and NIR lines detected. Conclusions. We have identified the source IRAS 16353-4636 as a new protostellar cluster. In this cluster we recognized three distinct sources: a low-mass YSO, a high-mass YSOs, and a mildly confined region of intense and non-thermal radio emission. We propose the latter corresponds to the terminal part of an outflow.Comment: To appear in A&A. 10 pages, 8 figure

    Unveiling the nature of IGR J16283-4838

    Get PDF
    Context. One of the most striking discoveries of the INTEGRAL observatory is the existence of a previously unknown population of X-ray sources in the inner arms of the Galaxy. The investigations of the optical/NIR counterparts of some of them have provided evidence that they are highly absorbed high mass X-ray binaries hosting supergiants. Aims. We aim to identify the optical/NIR counterpart of one of the newly discovered INTEGRAL sources, IGR J16283-4838, and determine the nature of this system. Methods. We present optical and NIR observations of the field of IGR J16283-4838, and use the astrometry and photometry of the sources within it to identify its counterpart. We obtain its NIR spectrum, and its optical/NIR spectral energy distribution by means of broadband photometry. We search for the intrinsic polarization of its light, and its short and long-term photometric variability. Results. We demonstrate that this source is a highly absorbed HMXB located beyond the Galactic center, and that it may be surrounded by a variable circumstellar medium.Comment: 6 pages, 5 figures, accepted for publication in Astronomy & Astrophysic

    Extended mid-infrared emission from VV 114: probing the birth of a ULIRG

    Full text link
    We present our 5-16 micron spectro-imaging observations of VV114, an infrared luminous early-stage merger, taken with the ISOCAM camera on-board ISO. We find that only 40% of the mid-infrared (MIR) flux is associated with a compact nuclear region, while the rest of the emission originates from a rather diffuse component extended over several kpc. This is in stark contrast with the very compact MIR starbursts usually seen in luminous infrared galaxies. A secondary peak of MIR emission is associated with an extra-nuclear star forming region which displays the largest Halpha equivalent width in the whole system. Comparing our data with the distribution of the molecular gas and cold dust, as well as with radio observations, it becomes evident that the conversion of molecular gas into stars can be triggered over large areas at the very first stages of an interaction. The presence of a very strong continuum at 5 microns in one of the sources indicates that an enshrouded active galactic nucleus may contribute to 40% of its MIR flux. We finally note that the relative variations in the UV to radio spectral properties between the merging galaxies provide evidence that the extinction-corrected star formation rate of similar objects at high z, such as those detected in optical deep surveys, can not be accurately derived from their rest-frame UV properties.Comment: 14 pages, 5 figures, accepted for publication in A&

    An AKARI Search for Intracluster Dust of Globular Clusters

    Full text link
    We report the observations of 12 globular clusters with the AKARI/FIS. Our goal is to search for emission from the cold dust within clusters. We detect diffuse emissions toward NGC 6402 and 2808, but the IRAS 100-micron maps show the presence of strong background radiation. They are likely emitted from the galactic cirrus, while we cannot rule out the possible association of a bump of emission with the cluster in the case of NGC 6402. We also detect 28 point-like sources mainly in the WIDE-S images (90 micron). At least several of them are not associated with the clusters but background galaxies based on some external catalogs. We present the SEDs by combining the near-and-mid infrared data obtained with the IRC if possible. The SEDs suggest that most of the point sources are background galaxies. We find one candidate of the intracluster dust which has no mid-infrared counterpart unlike the other point-like sources, although some features such as its point-like appearance should be explained before we conclude its intracluster origin. For most of the other clusters, we have confirmed the lack of the intracluster dust. We evaluate upper limits of the intracluster dust mass to be between 1.0E-05 and 1.0E-03 solar mass depending on the dust temperature. The lifetime of the intracluster dust inferred from the upper limits is shorter than 5 Myr (T=70K) or 50 Myr (35K). Such short lifetime indicates some mechanism(s) are at work to remove the intracluster dust. We also discuss its impact on the chemical evolution of globular clusters.Comment: Accepted for publication in PASJ AKARI special issue. 14 pages, 11 figure
    • …
    corecore