12,820 research outputs found

    Data-driven Models for Remaining Useful Life Estimation of Aircraft Engines and Hard Disk Drives

    Get PDF
    Failure of physical devices can cause inconvenience, loss of money, and sometimes even deaths. To improve the reliability of these devices, we need to know the remaining useful life (RUL) of a device at a given point in time. Data-driven approaches use data from a physical device to build a model that can estimate the RUL. They have shown great performance and are often simpler than traditional model-based approaches. Typical statistical and machine learning approaches are often not suited for sequential data prediction. Recurrent Neural Networks are designed to work with sequential data but suffer from the vanishing gradient problem over time. Therefore, I explore the use of Long Short-Term Memory (LSTM) networks for RUL prediction. I perform two experiments. First, I train bidirectional LSTM networks on the Backblaze hard-disk drive dataset. I achieve an accuracy of 96.4\% on a 60 day time window, state-of-the-art performance. Additionally, I use a unique standardization method that standardizes each hard drive instance independently and explore the benefits and downsides of this approach. Finally, I train LSTM models on the NASA N-CMAPSS dataset to predict aircraft engine remaining useful life. I train models on each of the eight sub-datasets, achieving a RMSE of 6.304 on one of the sub-datasets, the second-best in the current literature. I also compare an LSTM network\u27s performance to the performance of a Random Forest and Temporal Convolutional Neural Network model, demonstrating the LSTM network\u27s superior performance. I find that LSTM networks are capable predictors for device remaining useful life and show a thorough model development process that can be reproduced to develop LSTM models for various RUL prediction tasks. These models will be able to improve the reliability of devices such as aircraft engines and hard-disk drives

    A framework development to predict remaining useful life of a gas turbine mechanical component

    Get PDF
    Power-by-the-hour is a performance based offering for delivering outstanding service to operators of civil aviation aircraft. Operators need to guarantee to minimise downtime, reduce service cost and ensure value for money which requires an innovative advanced technology for predictive maintenance. Predictability, availability and reliability of the engine offers better service for operators, and the need to estimate the expected component failure prior to failure occurrence requires a proactive approach to predict the remaining useful life of components within an assembly. This research offers a framework for component remaining useful life prediction using assembly level data. The thesis presents a critical analysis on literature identifying the Weibull method, statistical technique and data-driven methodology relating to remaining useful life prediction, which are used in this research. The AS-IS practice captures relevant information based on the investigation conducted in the aerospace industry. The analysis of maintenance cycles relates to the examination of high-level events for engine availability, whereby more communications with industry showcase a through-life performance timeline visualisation. Overhaul sequence and activities are presented to gain insights of the timeline visualisation. The thesis covers the framework development and application to gas turbine single stage assembly, repair and replacement of components in single stage assembly, and multiple stage assembly. The framework is demonstrated in aerospace engines and power generation engines. The framework developed enables and supports domain experts to quickly respond to, and prepare for maintenance and on-time delivery of spare parts. The results of the framework show the probability of failure based on a pair of error values using the corresponding Scale and Shape parameters. The probability of failure is transformed into the remaining useful life depicting a typical Weibull distribution. The resulting Weibull curves developed with three scenarios of the case shows there are components renewals, therefore, the remaining useful life of the components are established. The framework is validated and verified through a case study with three scenarios and also through expert judgement

    Fleet Prognosis with Physics-informed Recurrent Neural Networks

    Full text link
    Services and warranties of large fleets of engineering assets is a very profitable business. The success of companies in that area is often related to predictive maintenance driven by advanced analytics. Therefore, accurate modeling, as a way to understand how the complex interactions between operating conditions and component capability define useful life, is key for services profitability. Unfortunately, building prognosis models for large fleets is a daunting task as factors such as duty cycle variation, harsh environments, inadequate maintenance, and problems with mass production can lead to large discrepancies between designed and observed useful lives. This paper introduces a novel physics-informed neural network approach to prognosis by extending recurrent neural networks to cumulative damage models. We propose a new recurrent neural network cell designed to merge physics-informed and data-driven layers. With that, engineers and scientists have the chance to use physics-informed layers to model parts that are well understood (e.g., fatigue crack growth) and use data-driven layers to model parts that are poorly characterized (e.g., internal loads). A simple numerical experiment is used to present the main features of the proposed physics-informed recurrent neural network for damage accumulation. The test problem consist of predicting fatigue crack length for a synthetic fleet of airplanes subject to different mission mixes. The model is trained using full observation inputs (far-field loads) and very limited observation of outputs (crack length at inspection for only a portion of the fleet). The results demonstrate that our proposed hybrid physics-informed recurrent neural network is able to accurately model fatigue crack growth even when the observed distribution of crack length does not match with the (unobservable) fleet distribution.Comment: Data and codes (including our implementation for both the multi-layer perceptron, the stress intensity and Paris law layers, the cumulative damage cell, as well as python driver scripts) used in this manuscript are publicly available on GitHub at https://github.com/PML-UCF/pinn. The data and code are released under the MIT Licens

    A Framework of Dynamic Data Driven Digital Twin for Complex Engineering Products: the Example of Aircraft Engine Health Management

    Get PDF
    Digital twin is a vital enabling technology for smart manufacturing in the era of Industry 4.0. Digital twin effectively replicates its physical asset enabling easy visualization, smart decision-making and cognitive capability in the system. In this paper, a framework of dynamic data driven digital twin for complex engineering products was proposed. To illustrate the proposed framework, an example of health management on aircraft engines was studied. This framework models the digital twin by extracting information from the various sensors and Industry Internet of Things (IIoT) monitoring the remaining useful life (RUL) of an engine in both cyber and physical domains. Then, with sensor measurements selected from linear degradation models, a long short-term memory (LSTM) neural network is proposed to dynamically update the digital twin, which can estimate the most up-to-date RUL of the physical aircraft engine. Through comparison with other machine learning algorithms, including similarity based linear regression and feed forward neural network, on RUL modelling, this LSTM based dynamical data driven digital twin provides a promising tool to accurately replicate the health status of aircraft engines. This digital twin based RUL technique can also be extended for health management and remote operation of manufacturing systems
    • …
    corecore