1,293 research outputs found

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Outdoor Air Quality Monitoring with Enhanced Lifetime-enhancing Cooperative Data Gathering and Relaying Algorithm (E-LCDGRA) Based Sensor Network

    Get PDF
    The air continues to be an extremely substantial part of survival on earth. Air pollution poses a critical risk to humans and the environment. Using sensor-based structures, we can get air pollutant data in real-time. However, the sensors rely upon limited-battery sources that are immaterial to be alternated repeatedly amid extensive broadcast costs associated with real-time applications like air quality monitoring. Consequently, air quality sensor-based monitoring structures are lifetime-constrained and prone to the untimely loss of connectivity. Effective energy administration measures must therefore be implemented to handle the outlay of power dissipation. In this study, the authors propose outdoor air quality monitoring using a sensor network with an enhanced lifetime-enhancing cooperative data gathering and relaying algorithm (E-LCDGRA). LCDGRA is a cluster-based cooperative event-driven routing scheme with dedicated relay allocation mechanisms that tackle the problems of event-driven clustered WSNs with immobile gateways. The adapted variant, named E-LCDGRA, enhances the LCDGRA algorithm by incorporating a non-beaconaided CSMA layer-2 un-slotted protocol with a back-off mechanism. The performance of the proposed E-LCDGRA is examined with other classical gathering schemes, including IEESEP and CERP, in terms of average lifetime, energy consumption, and dela

    Dynamic distributed clustering in wireless sensor networks via Voronoi tessellation control

    Get PDF
    This paper presents two dynamic and distributed clustering algorithms for Wireless Sensor Networks (WSNs). Clustering approaches are used in WSNs to improve the network lifetime and scalability by balancing the workload among the clusters. Each cluster is managed by a cluster head (CH) node. The first algorithm requires the CH nodes to be mobile: by dynamically varying the CH node positions, the algorithm is proved to converge to a specific partition of the mission area, the generalised Voronoi tessellation, in which the loads of the CH nodes are balanced. Conversely, if the CH nodes are fixed, a weighted Voronoi clustering approach is proposed with the same load-balancing objective: a reinforcement learning approach is used to dynamically vary the mission space partition by controlling the weights of the Voronoi regions. Numerical simulations are provided to validate the approaches

    Energy Efficient Bandwidth Management in Wireless Sensor Network

    Get PDF

    Adaptive Distributed Fair Scheduling and Its Implementation in Wireless Sensor Networks

    Get PDF
    A novel adaptive and distributed fair scheduling (ADFS) scheme for wireless sensor networks is shown through hardware implementation. In contrast to simulation, hardware evaluation provides valuable feedback to protocol and hardware development process. The proposed protocol focuses on quality-of-service (QoS) issues to address flow prioritization. Thus, when nodes access a shared channel, the proposed ADFS allocates the channel bandwidth proportionally to the weight, or priority, of the packet flows. Moreover, ADFS allows for dynamic allocation of network resources with little added overhead. Weights are initially assigned using user specified QoS criteria. These weights are subsequently updated as a function of delay, enqueued packets, flow arrival rate, and the previous packet weight. The back-off interval is also altered using the weight update equation. The weight update and the back-off interval selection ensure that global fairness is attained even with variable service rates. The algorithm is implemented using UMR/SLU motes for an industrial monitoring application. Results the hardware implementation demonstrates improved performance in terms of fairness index, flow rate, and delay
    • …
    corecore