5,220 research outputs found

    Socially Compliant Navigation through Raw Depth Inputs with Generative Adversarial Imitation Learning

    Full text link
    We present an approach for mobile robots to learn to navigate in dynamic environments with pedestrians via raw depth inputs, in a socially compliant manner. To achieve this, we adopt a generative adversarial imitation learning (GAIL) strategy, which improves upon a pre-trained behavior cloning policy. Our approach overcomes the disadvantages of previous methods, as they heavily depend on the full knowledge of the location and velocity information of nearby pedestrians, which not only requires specific sensors, but also the extraction of such state information from raw sensory input could consume much computation time. In this paper, our proposed GAIL-based model performs directly on raw depth inputs and plans in real-time. Experiments show that our GAIL-based approach greatly improves the safety and efficiency of the behavior of mobile robots from pure behavior cloning. The real-world deployment also shows that our method is capable of guiding autonomous vehicles to navigate in a socially compliant manner directly through raw depth inputs. In addition, we release a simulation plugin for modeling pedestrian behaviors based on the social force model.Comment: ICRA 2018 camera-ready version. 7 pages, video link: https://www.youtube.com/watch?v=0hw0GD3lkA

    Meta-Reinforcement Learning for Robotic Industrial Insertion Tasks

    Full text link
    Robotic insertion tasks are characterized by contact and friction mechanics, making them challenging for conventional feedback control methods due to unmodeled physical effects. Reinforcement learning (RL) is a promising approach for learning control policies in such settings. However, RL can be unsafe during exploration and might require a large amount of real-world training data, which is expensive to collect. In this paper, we study how to use meta-reinforcement learning to solve the bulk of the problem in simulation by solving a family of simulated industrial insertion tasks and then adapt policies quickly in the real world. We demonstrate our approach by training an agent to successfully perform challenging real-world insertion tasks using less than 20 trials of real-world experience. Videos and other material are available at https://pearl-insertion.github.io/Comment: 9 pages, 8 figure

    Hierarchical Reinforcement Learning for Quadruped Locomotion

    Full text link
    Legged locomotion is a challenging task for learning algorithms, especially when the task requires a diverse set of primitive behaviors. To solve these problems, we introduce a hierarchical framework to automatically decompose complex locomotion tasks. A high-level policy issues commands in a latent space and also selects for how long the low-level policy will execute the latent command. Concurrently, the low-level policy uses the latent command and only the robot's on-board sensors to control the robot's actuators. Our approach allows the high-level policy to run at a lower frequency than the low-level one. We test our framework on a path-following task for a dynamic quadruped robot and we show that steering behaviors automatically emerge in the latent command space as low-level skills are needed for this task. We then show efficient adaptation of the trained policy to a different task by transfer of the trained low-level policy. Finally, we validate the policies on a real quadruped robot. To the best of our knowledge, this is the first application of end-to-end hierarchical learning to a real robotic locomotion task

    When Autonomous Systems Meet Accuracy and Transferability through AI: A Survey

    Full text link
    With widespread applications of artificial intelligence (AI), the capabilities of the perception, understanding, decision-making and control for autonomous systems have improved significantly in the past years. When autonomous systems consider the performance of accuracy and transferability, several AI methods, like adversarial learning, reinforcement learning (RL) and meta-learning, show their powerful performance. Here, we review the learning-based approaches in autonomous systems from the perspectives of accuracy and transferability. Accuracy means that a well-trained model shows good results during the testing phase, in which the testing set shares a same task or a data distribution with the training set. Transferability means that when a well-trained model is transferred to other testing domains, the accuracy is still good. Firstly, we introduce some basic concepts of transfer learning and then present some preliminaries of adversarial learning, RL and meta-learning. Secondly, we focus on reviewing the accuracy or transferability or both of them to show the advantages of adversarial learning, like generative adversarial networks (GANs), in typical computer vision tasks in autonomous systems, including image style transfer, image superresolution, image deblurring/dehazing/rain removal, semantic segmentation, depth estimation, pedestrian detection and person re-identification (re-ID). Then, we further review the performance of RL and meta-learning from the aspects of accuracy or transferability or both of them in autonomous systems, involving pedestrian tracking, robot navigation and robotic manipulation. Finally, we discuss several challenges and future topics for using adversarial learning, RL and meta-learning in autonomous systems

    Exploring applications of deep reinforcement learning for real-world autonomous driving systems

    Full text link
    Deep Reinforcement Learning (DRL) has become increasingly powerful in recent years, with notable achievements such as Deepmind's AlphaGo. It has been successfully deployed in commercial vehicles like Mobileye's path planning system. However, a vast majority of work on DRL is focused on toy examples in controlled synthetic car simulator environments such as TORCS and CARLA. In general, DRL is still at its infancy in terms of usability in real-world applications. Our goal in this paper is to encourage real-world deployment of DRL in various autonomous driving (AD) applications. We first provide an overview of the tasks in autonomous driving systems, reinforcement learning algorithms and applications of DRL to AD systems. We then discuss the challenges which must be addressed to enable further progress towards real-world deployment.Comment: Accepted for Oral Presentation at VISAPP 201

    PRM-RL: Long-range Robotic Navigation Tasks by Combining Reinforcement Learning and Sampling-based Planning

    Full text link
    We present PRM-RL, a hierarchical method for long-range navigation task completion that combines sampling based path planning with reinforcement learning (RL). The RL agents learn short-range, point-to-point navigation policies that capture robot dynamics and task constraints without knowledge of the large-scale topology. Next, the sampling-based planners provide roadmaps which connect robot configurations that can be successfully navigated by the RL agent. The same RL agents are used to control the robot under the direction of the planning, enabling long-range navigation. We use the Probabilistic Roadmaps (PRMs) for the sampling-based planner. The RL agents are constructed using feature-based and deep neural net policies in continuous state and action spaces. We evaluate PRM-RL, both in simulation and on-robot, on two navigation tasks with non-trivial robot dynamics: end-to-end differential drive indoor navigation in office environments, and aerial cargo delivery in urban environments with load displacement constraints. Our results show improvement in task completion over both RL agents on their own and traditional sampling-based planners. In the indoor navigation task, PRM-RL successfully completes up to 215 m long trajectories under noisy sensor conditions, and the aerial cargo delivery completes flights over 1000 m without violating the task constraints in an environment 63 million times larger than used in training.Comment: 9 pages, 7 figure

    Progress & Compress: A scalable framework for continual learning

    Full text link
    We introduce a conceptually simple and scalable framework for continual learning domains where tasks are learned sequentially. Our method is constant in the number of parameters and is designed to preserve performance on previously encountered tasks while accelerating learning progress on subsequent problems. This is achieved by training a network with two components: A knowledge base, capable of solving previously encountered problems, which is connected to an active column that is employed to efficiently learn the current task. After learning a new task, the active column is distilled into the knowledge base, taking care to protect any previously acquired skills. This cycle of active learning (progression) followed by consolidation (compression) requires no architecture growth, no access to or storing of previous data or tasks, and no task-specific parameters. We demonstrate the progress & compress approach on sequential classification of handwritten alphabets as well as two reinforcement learning domains: Atari games and 3D maze navigation.Comment: Accepted at ICML 201

    Deep Reinforcement learning for real autonomous mobile robot navigation in indoor environments

    Full text link
    Deep Reinforcement Learning has been successfully applied in various computer games [8]. However, it is still rarely used in real-world applications, especially for the navigation and continuous control of real mobile robots [13]. Previous approaches lack safety and robustness and/or need a structured environment. In this paper we present our proof of concept for autonomous self-learning robot navigation in an unknown environment for a real robot without a map or planner. The input for the robot is only the fused data from a 2D laser scanner and a RGB-D camera as well as the orientation to the goal. The map of the environment is unknown. The output actions of an Asynchronous Advantage Actor-Critic network (GA3C) are the linear and angular velocities for the robot. The navigator/controller network is pretrained in a high-speed, parallel, and self-implemented simulation environment to speed up the learning process and then deployed to the real robot. To avoid overfitting, we train relatively small networks, and we add random Gaussian noise to the input laser data. The sensor data fusion with the RGB-D camera allows the robot to navigate in real environments with real 3D obstacle avoidance and without the need to fit the environment to the sensory capabilities of the robot. To further increase the robustness, we train on environments of varying difficulties and run 32 training instances simultaneously. Video: supplementary File / YouTube, Code: GitHubComment: 7 pages, repor

    Point Cloud Based Reinforcement Learning for Sim-to-Real and Partial Observability in Visual Navigation

    Full text link
    Reinforcement Learning (RL), among other learning-based methods, represents powerful tools to solve complex robotic tasks (e.g., actuation, manipulation, navigation, etc.), with the need for real-world data to train these systems as one of its most important limitations. The use of simulators is one way to address this issue, yet knowledge acquired in simulations does not work directly in the real-world, which is known as the sim-to-real transfer problem. While previous works focus on the nature of the images used as observations (e.g., textures and lighting), which has proven useful for a sim-to-sim transfer, they neglect other concerns regarding said observations, such as precise geometrical meanings, failing at robot-to-robot, and thus in sim-to-real transfers. We propose a method that learns on an observation space constructed by point clouds and environment randomization, generalizing among robots and simulators to achieve sim-to-real, while also addressing partial observability. We demonstrate the benefits of our methodology on the point goal navigation task, in which our method proves to be highly unaffected to unseen scenarios produced by robot-to-robot transfer, outperforms image-based baselines in robot-randomized experiments, and presents high performances in sim-to-sim conditions. Finally, we perform several experiments to validate the sim-to-real transfer to a physical domestic robot platform, confirming the out-of-the-box performance of our system.Comment: Accepted to IROS'202

    Domain Adaptation Using Adversarial Learning for Autonomous Navigation

    Full text link
    Autonomous navigation has become an increasingly popular machine learning application. Recent advances in deep learning have also resulted in great improvements to autonomous navigation. However, prior outdoor autonomous navigation depends on various expensive sensors or large amounts of real labeled data which is difficult to acquire and sometimes erroneous. The objective of this study is to train an autonomous navigation model that uses a simulator (instead of real labeled data) and an inexpensive monocular camera. In order to exploit the simulator satisfactorily, our proposed method is based on domain adaptation with adversarial learning. Specifically, we propose our model with 1) a dilated residual block in the generator, 2) cycle loss, and 3) style loss to improve the adversarial learning performance for satisfactory domain adaptation. In addition, we perform a theoretical analysis that supports the justification of our proposed method. We present empirical results of navigation in outdoor courses with various intersections using a commercial radio controlled car. We observe that our proposed method allows us to learn a favorable navigation model by generating images with realistic textures. To the best of our knowledge, this is the first work to apply domain adaptation with adversarial learning to autonomous navigation in real outdoor environments. Our proposed method can also be applied to precise image generation or other robotic tasks
    corecore