815 research outputs found

    An Adaptive Data-Driven Iterative Feedforward Tuning Approach Based on Fast Recursive Algorithm: With Application to A Linear Motor

    Get PDF
    The feedforward control can effectively improve the servo performance in applications with high requirements of velocity and acceleration. The iterative feedforward tuning method (IFFT) enables the possibility of both removing the need for prior knowledge of the system plant in model-based feedforward and improving the extrapolation capability for varying tasks of iterative learning control. However, most of IFFT methods require to set the number of basis functions in advance, which is inconvenient to the system design. To tackle this problem, an adaptive data-driven IFFT based on fast recursive algorithm (IFFT-FRA) is developed in this paper. Explicitly, based on FRA the proposed approach can adaptively tune the feedforward structure, which significantly increases the intelligence of the approach. Additionally, a data-based iterative tuning procedure is introduced to achieve the unbiased estimation of parameters optimization in presence of noise. Comparative experiments on a linear motor confirms the effectiveness of the proposed approach

    Safe Risk-averse Bayesian Optimization for Controller Tuning

    Full text link
    Controller tuning and parameter optimization are crucial in system design to improve both the controller and underlying system performance. Bayesian optimization has been established as an efficient model-free method for controller tuning and adaptation. Standard methods, however, are not enough for high-precision systems to be robust with respect to unknown input-dependent noise and stable under safety constraints. In this work, we present a novel data-driven approach, RaGoOSE, for safe controller tuning in the presence of heteroscedastic noise, combining safe learning with risk-averse Bayesian optimization. We demonstrate the method for synthetic benchmark and compare its performance to established BO-based tuning methods. We further evaluate RaGoOSE performance on a real precision-motion system utilized in semiconductor industry applications and compare it to the built-in auto-tuning routine

    Safe risk-averse bayesian optimization for controller tuning

    Get PDF
    Controller tuning and parameter optimization are crucial in system design to improve both the controller and underlying system performance. Bayesian optimization has been established as an efficient model-free method for controller tuning and adaptation. Standard methods, however, are not enough for high-precision systems to be robust with respect to unknown input-dependent noise and stable under safety constraints. In this work, we present a novel data-driven approach, RAGoOSe, for safe controller tuning in the presence of heteroscedastic noise, combining safe learning with risk-averse Bayesian optimization. We demonstrate the method for synthetic benchmark and compare its performance to established BO-based tuning methods. We further evaluate RaGoose performance on a real precision-motion system utilized in semiconductor industry applications and compare it to the built-in auto-tuning routine

    Next Generation of Ultra-High Precision Amplifiers

    Get PDF

    Principles of Neuromorphic Photonics

    Full text link
    In an age overrun with information, the ability to process reams of data has become crucial. The demand for data will continue to grow as smart gadgets multiply and become increasingly integrated into our daily lives. Next-generation industries in artificial intelligence services and high-performance computing are so far supported by microelectronic platforms. These data-intensive enterprises rely on continual improvements in hardware. Their prospects are running up against a stark reality: conventional one-size-fits-all solutions offered by digital electronics can no longer satisfy this need, as Moore's law (exponential hardware scaling), interconnection density, and the von Neumann architecture reach their limits. With its superior speed and reconfigurability, analog photonics can provide some relief to these problems; however, complex applications of analog photonics have remained largely unexplored due to the absence of a robust photonic integration industry. Recently, the landscape for commercially-manufacturable photonic chips has been changing rapidly and now promises to achieve economies of scale previously enjoyed solely by microelectronics. The scientific community has set out to build bridges between the domains of photonic device physics and neural networks, giving rise to the field of \emph{neuromorphic photonics}. This article reviews the recent progress in integrated neuromorphic photonics. We provide an overview of neuromorphic computing, discuss the associated technology (microelectronic and photonic) platforms and compare their metric performance. We discuss photonic neural network approaches and challenges for integrated neuromorphic photonic processors while providing an in-depth description of photonic neurons and a candidate interconnection architecture. We conclude with a future outlook of neuro-inspired photonic processing.Comment: 28 pages, 19 figure

    Optimal control and approximations

    Get PDF

    Optimal control and approximations

    Get PDF
    • …
    corecore