209 research outputs found

    Construction of Data Driven Decomposition Based Soft Sensors with Auto Encoder Deep Neural Network for IoT Healthcare Applications

    Get PDF
    The architecture of IoT healthcare is motivated towards the data-driven realization and patient-centric health models, whereas the personalized assistance is provided by deploying the advanced sensors. According to the procedures in surgery, in the emergency unit, the patients are monitored till they are stable physically and then shifted to ward for further recovery and evaluation. Normally evaluation done in ward doesn’t suggest continuous parameters monitoring for physiological condition and thus relapse of patients are common. In real-time healthcare applications, the vital parameters will be estimated through dedicated sensors, that are still luxurious at the present situation and highly sensitive to harsh conditions of environment. Furthermore, for real-time monitoring, delay is usually present in the sensors. Because of these issues, data-driven soft sensors are highly attractive alternatives. This research is motivated towards this fact and Auto Encoder Deep Neural Network (AutoEncDeepNN) is proposed depending on Health Framework in the internet assisting the patients with trigger-based sensor activation model to manage master and slave sensors. The advantage of the proposed method is that the hidden information are mined automatically from the sensors and high representative features are generated by multiple layer’s iteration. This goal is consistently achieved and thus the proposed model outperforms few standard approaches which are considered like Hierarchical Extreme Learning Machine (HELM), Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM). It is found that the proposed AutoEncDeepNN method achieves 94.72% of accuracy, 41.96% of RMSE, 34.16% of RAE and 48.68% of MAE in 74.64 ms

    An innovative metaheuristic strategy for solar energy management through a neural networks framework

    Get PDF
    Proper management of solar energy as an effective renewable source is of high importance toward sustainable energy harvesting. This paper offers a novel sophisticated method for predicting solar irradiance (SIr) from environmental conditions. To this end, an efficient metaheuristic technique, namely electromagnetic field optimization (EFO), is employed for optimizing a neural network. This algorithm quickly mines a publicly available dataset for nonlinearly tuning the network parameters. To suggest an optimal configuration, five influential parameters of the EFO are optimized by an extensive trial and error practice. Analyzing the results showed that the proposed model can learn the SIr pattern and predict it for unseen conditions with high accuracy. Furthermore, it provided about 10% and 16% higher accuracy compared to two benchmark optimizers, namely shuffled complex evolution and shuffled frog leaping algorithm. Hence, the EFO-supervised neural network can be a promising tool for the early prediction of SIr in practice. The findings of this research may shed light on the use of advanced intelligent models for efficient energy development

    Data Mining Applications to Fault Diagnosis in Power Electronic Systems: A Systematic Review

    Get PDF

    Data-driven sensors and their applications

    Get PDF
    Virtuální senzory jsou postupně se rozšiřující technikou v oblasti průmyslových měření. Jedná se o počítačové programy, které za pomoci dříve získaných dat poskytují další údaje podobně jako klasické hardwarové senzory. Tyto údaje získávají pomocí prediktivních modelů založených na metodách strojového učení jako jsou například neuronové sítě nebo support vector machines. Tato práce obsahuje především rešerši fungování, struktur a tvorby virtuálních senzorů. Dále popisuje strojové učení, rozdělení jeho algoritmů a seznamuje s metodami běžně využívanými v oblasti virtuálních senzorů. Ke konci autor popisuje jejich možný budoucí vývoj a směr dalších aplikací.Soft sensors are a gradually expanding technique in the field of industrial measurement. These sensors are computer programs that provide additional data using previously acquired data in a similar way to conventional hardware sensors. The additional data is obtained using predictive models based on machine learning methods such as neural networks or support vector machines. This work mainly includes a research on the function, structure and creation of soft sensors. It also describes machine learning, the distribution of its algorithms and introduces the methods commonly used in the field of virtual sensors. Towards the end, the author describes possible future development of soft sensors and the direction of further applications.

    Computational Intelligence in Healthcare

    Get PDF
    This book is a printed edition of the Special Issue Computational Intelligence in Healthcare that was published in Electronic

    Computational Intelligence in Healthcare

    Get PDF
    The number of patient health data has been estimated to have reached 2314 exabytes by 2020. Traditional data analysis techniques are unsuitable to extract useful information from such a vast quantity of data. Thus, intelligent data analysis methods combining human expertise and computational models for accurate and in-depth data analysis are necessary. The technological revolution and medical advances made by combining vast quantities of available data, cloud computing services, and AI-based solutions can provide expert insight and analysis on a mass scale and at a relatively low cost. Computational intelligence (CI) methods, such as fuzzy models, artificial neural networks, evolutionary algorithms, and probabilistic methods, have recently emerged as promising tools for the development and application of intelligent systems in healthcare practice. CI-based systems can learn from data and evolve according to changes in the environments by taking into account the uncertainty characterizing health data, including omics data, clinical data, sensor, and imaging data. The use of CI in healthcare can improve the processing of such data to develop intelligent solutions for prevention, diagnosis, treatment, and follow-up, as well as for the analysis of administrative processes. The present Special Issue on computational intelligence for healthcare is intended to show the potential and the practical impacts of CI techniques in challenging healthcare applications

    Machine learning techniques to forecast non-linear trends in smart environments

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Contributions to the study of Austism Spectrum Brain conectivity

    Get PDF
    164 p.Autism Spectrum Disorder (ASD) is a largely prevalent neurodevelopmental condition with a big social and economical impact affecting the entire life of families. There is an intense search for biomarkers that can be assessed as early as possible in order to initiate treatment and preparation of the family to deal with the challenges imposed by the condition. Brain imaging biomarkers have special interest. Specifically, functional connectivity data extracted from resting state functional magnetic resonance imaging (rs-fMRI) should allow to detect brain connectivity alterations. Machine learning pipelines encompass the estimation of the functional connectivity matrix from brain parcellations, feature extraction and building classification models for ASD prediction. The works reported in the literature are very heterogeneous from the computational and methodological point of view. In this Thesis we carry out a comprehensive computational exploration of the impact of the choices involved while building these machine learning pipelines

    Deep Learning Techniques in Extreme Weather Events: A Review

    Full text link
    Extreme weather events pose significant challenges, thereby demanding techniques for accurate analysis and precise forecasting to mitigate its impact. In recent years, deep learning techniques have emerged as a promising approach for weather forecasting and understanding the dynamics of extreme weather events. This review aims to provide a comprehensive overview of the state-of-the-art deep learning in the field. We explore the utilization of deep learning architectures, across various aspects of weather prediction such as thunderstorm, lightning, precipitation, drought, heatwave, cold waves and tropical cyclones. We highlight the potential of deep learning, such as its ability to capture complex patterns and non-linear relationships. Additionally, we discuss the limitations of current approaches and highlight future directions for advancements in the field of meteorology. The insights gained from this systematic review are crucial for the scientific community to make informed decisions and mitigate the impacts of extreme weather events
    corecore