635 research outputs found

    IoT-Based Smart Management of Healthcare Services in Hospital Buildings during COVID-19 and Future Pandemics

    Get PDF
    The paper aims to design and develop an innovative solution in the Smart Building context that increases guests' hospitality level during the COVID-19 and future pandemics in locations like hotels, conference locations, campuses, and hospitals. The solution supports features intending to control the number of occupants by online appointments, smart navigation, and queue management in the building through mobile phones and navigation to the desired location by highlighting interests and facilities. Moreover, checking the space occupancy, and automatic adjustment of the environmental features are the abilities that can be added to the proposed design in the future development. The proposed solution can address all mentioned issues regarding the smart building by integrating and utilizing various data sources collected by the internet of things (IoT) sensors. Then, storing and processing collected data in servers and finally sending the desired information to the end-users. Consequently, through the integration of multiple IoT technologies, a unique platform with minimal hardware usage and maximum adaptability for smart management of general and healthcare services in hospital buildings will be created

    Method and system for non-invasive blood glucose measurement using signal change of the non-glucose components induced by the presence of glucose

    Get PDF
    System and methods for anonymously selecting subjects for treatment against an infectious disease caused by a pathogen. The system comprises a plurality of electronic devices comprising instructions to generate an ID and, when in proximity of another such electronic device, one or both electronic devices transmit/receive the ID to/from the other electronic device. Then, a score is generated based on a plurality of such received IDs. Additionally, based on information received from a server, relevant treatment instructions are displayed to the subjects based on the received information and the score. The server comprises instructions for sending to the plurality of electronic devices the information to be displayed with the relevant treatment instructions, additionally the server and/or the electronic devices comprise instructions to generate a prediction of likelihood of a subject transmitting the pathogen, based on the score of the subject.https://irl.umsl.edu/patents/1040/thumbnail.jp

    LOCALIZATION OF PEOPLE IN GNSS-DENIED ENVIRONMENTS USING NEURAL-INERTIAL PREDICTION AND KALMAN FILTER CORRECTION

    Get PDF
    This thesis presents a method based on neural networks and Kalman filters for estimating the position of a person carrying a mobile device (i.e., cell phone or tablet) that can communicate with static UWB sensors or is carried in an environment with known landmark positions. This device is used to collect and share inertial measurement unit (IMU) information — which includes data from sensors such as accelerometers, gyroscopes, and magnetometers — and UWB and landmark information. The collected data, in combination with other necessary initial condition information, is input into a pre-trained deep neural network (DNN) which predicts the movement of the person. The prediction result is then periodically — based on outside measurement availability — updated to produce a more accurate result. The update process utilizes a Kalman Filter approach that relies on empirical and statistical models for DNN prediction and sensor noise. Therefore, the approach combines the principles of artificial intelligence and filtering techniques to produce a complete system which converts raw data to trajectory results of people. The initial tests were completed indoors where known landmark locations were compared with predicted positions. In a second set of experiments, GNSS location signals were combined with position estimation for correction. The final result shows the correction of neural network prediction with data from UWB sensors having known locations. Prediction and correction trajectories are shown and compared with the ground truth for applicable environments. The results show that the proposed system is accurate and reliable for predicting the trajectory of a person and can be used in future applications that require the localization of people in scenarios where GNSS is degraded or unavailable, such as indoors, in forests, or underground

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    A privacy-aware crowd management system for smart cities and smart buildings

    Get PDF
    Cities are growing at a dizzying pace and they require improved methods to manage crowded areas. Crowd management stands for the decisions and actions taken to supervise and control densely populated spaces and it involves multiple challenges, from recognition and assessment to application of actions tailored to the current situation. To that end, Wi-Fi-based monitoring systems have emerged as a cost-effective solution for the former one. The key challenge that they impose is the requirement to handle large datasets and provide results in near real-time basis. However, traditional big data and event processing approaches have important shortcomings while dealing with crowd management information. In this paper, we describe a novel system architecture for real-time crowd recognition for smart cities and smart buildings that can be easily replicated. The described system proposes a privacy-aware platform that enables the application of artificial intelligence mechanisms to assess crowds' behavior in buildings employing sensed Wi-Fi traces. Furthermore, the present paper shows the implementation of the system in two buildings, an airport and a market, as well as the results of applying a set of classification algorithms to provide crowd management information.This work was supported in part by the Spanish Government (MINECO) by means of the Project Future Internet Enabled Resilient CitiEs (FIERCE) under Grant RTI2018-093475-A-I00, and in part by the European Union’s Horizon 2020 Programme through the European project Federated CPS Digital Innovation Hubs for the Smart Anything Everywhere Initiative (FED4SAE) under Grant 761708
    • …
    corecore