117 research outputs found

    Fault detection of a wind turbine generator bearing using interpretable machine learning

    Get PDF
    A wind turbine is subjected to a number of degradation mechanisms during its operational lifetime. If left unattended, the degradation of components will result in poor performance and potential failure. Hence, to mitigate the risk of failures, it is imperative that the wind turbines are regularly monitored, inspected, and optimally maintained. Offshore wind turbines are normally inspected and maintained at fixed intervals (generally six-month intervals) and the maintenance program (list of tasks) is prepared using experience or risk-based reliability analysis, like risk-based inspection (RBI) and reliability-centered maintenance (RCM). This time-based maintenance program can be improved by incorporating results from condition monitoring (CM) involving data acquisition using sensors and fault detection using data analytics. It is important to ensure quality and quantity of data and to use correct procedures for data interpretation for fault detection to properly carry out condition assessment. This thesis contains the work carried out to develop a machine learning (ML) based methodology for detecting faults in a wind turbine generator bearing. The methodology includes application of ML using supervisory control and data acquisition (SCADA) data for predicting the operating temperature of a healthy bearing, and then comparing the predicted bearing temperature with the actual bearing temperature. Consistent abnormal differences between predicted and actual temperatures may be attributed to the degradation and presence of a fault in the bearing. This fault detection can then be used for rescheduling the maintenance tasks. The methodology is discussed in detail using a case study. In this thesis, interpretable ML tools are used to identify faults in a wind turbine generator bearing. Furthermore, variables affecting the generator bearing temperature are investigated. The analysis used two years of operational data from a 2 MW offshore wind turbine located in the Gulf of Guinea off the west coast of Africa. Out of the four ML models that were evaluated, the XGBoost model was determined to be the most effective performer. After utilizing the Shapley additive explanations (SHAP) to analyze the XGBoost model, it was determined that the temperature in the generator phase windings had the most significant effect on the model's predictions. Finally, based upon the deviation between the actual and the predicted temperatures, an anomaly in the generator bearing was successfully identified two months prior to a generator failure occurring.Masteroppgave i havteknologiHTEK3995MAMN-HTEKMAMN-HTE

    Predictive maintenance with industrial sensor data

    Get PDF
    The Norwegian Ministry of Petroleum and Energy Commissions report shows that the government is making a large step closer to its ambition of allocating regions for 30,000 MW offshore wind via way of means of 2040. According to a report by IRENA, offshore wind operation and maintenance (O & M) costs make up a significant portion of the overall cost of electricity for offshore wind farms in G20 countries, ranging from 16-25%. To address this issue, it is essential to explore methods for improving operational reliability and reducing the maintenance costs of wind turbines. One promising approach is predictive maintenance, which involves leveraging data collected from sensors already equipped with the turbines to detect and address potential issues before they become more serious. Predictive maintenance is important in wind farms to reduce downtime and optimize the performance of wind turbines. Various rotating components in wind turbines make them complicated machinery, and if any of those parts fails, it can cause the entire turbine to shut down. This can result in lost revenue for the wind farm operator and lead to higher maintenance costs if the problem is not addressed quickly. This can be possible through a Supervisory Control and Data Acquisition (SCADA) system, which collects and analyzes data from various turbine components. We have developed a method for detecting and monitoring failures in critical components such as the gearbox and generator, based on historical SCADA data. Our approach utilizes machine learning models, specifically extreme gradient boosting (XGBoost), and has been tested on two real-world case studies involving eight different turbines. The outcomes show both the effectiveness and usefulness of our technique for boosting wind turbine reliability and minimizing maintenance costs

    The blessings of explainable AI in operations & maintenance of wind turbines

    Get PDF
    Wind turbines play an integral role in generating clean energy, but regularly suffer from operational inconsistencies and failures leading to unexpected downtimes and significant Operations & Maintenance (O&M) costs. Condition-Based Monitoring (CBM) has been utilised in the past to monitor operational inconsistencies in turbines by applying signal processing techniques to vibration data. The last decade has witnessed growing interest in leveraging Supervisory Control & Acquisition (SCADA) data from turbine sensors towards CBM. Machine Learning (ML) techniques have been utilised to predict incipient faults in turbines and forecast vital operational parameters with high accuracy by leveraging SCADA data and alarm logs. More recently, Deep Learning (DL) methods have outperformed conventional ML techniques, particularly for anomaly prediction. Despite demonstrating immense promise in transitioning to Artificial Intelligence (AI), such models are generally black-boxes that cannot provide rationales behind their predictions, hampering the ability of turbine operators to rely on automated decision making. We aim to help combat this challenge by providing a novel perspective on Explainable AI (XAI) for trustworthy decision support.This thesis revolves around three key strands of XAI – DL, Natural Language Generation (NLG) and Knowledge Graphs (KGs), which are investigated by utilising data from an operational turbine. We leverage DL and NLG to predict incipient faults and alarm events in the turbine in natural language as well as generate human-intelligible O&M strategies to assist engineers in fixing/averting the faults. We also propose specialised DL models which can predict causal relationships in SCADA features as well as quantify the importance of vital parameters leading to failures. The thesis finally culminates with an interactive Question- Answering (QA) system for automated reasoning that leverages multimodal domain-specific information from a KG, facilitating engineers to retrieve O&M strategies with natural language questions. By helping make turbines more reliable, we envisage wider adoption of wind energy sources towards tackling climate change

    Data-driven quantification of model-form uncertainty in Reynolds-averaged simulations of wind farms

    Full text link
    Computational fluid dynamics using the Reynolds-averaged Navier-Stokes (RANS) remains the most cost-effective approach to study wake flows and power losses in wind farms. The underlying assumptions associated with turbulence closures are one of the biggest sources of errors and uncertainties in the model predictions. This work aims to quantify model-form uncertainties in RANS simulations of wind farms at high Reynolds numbers under neutrally stratified conditions by perturbing the Reynolds stress tensor through a data-driven machine-learning technique. To this end, a two-step feature-selection method is applied to determine key features of the model. Then, the extreme gradient boosting algorithm is validated and employed to predict the perturbation amount and direction of the modeled Reynolds stress toward the limiting states of turbulence on the barycentric map. This procedure leads to a more accurate representation of the Reynolds stress anisotropy. The data-driven model is trained on high-fidelity data obtained from large-eddy simulation of a specific wind farm, and it is tested on two other (unseen) wind farms with distinct layouts to analyze its performance in cases with different turbine spacing and partial wake. The results indicate that, unlike the data-free approach in which a uniform and constant perturbation amount is applied to the entire computational domain, the proposed framework yields an optimal estimation of the uncertainty bounds for the RANS-predicted quantities of interest, including the wake velocity, turbulence intensity, and power losses in wind farms

    Tree-based Intelligent Intrusion Detection System in Internet of Vehicles

    Full text link
    The use of autonomous vehicles (AVs) is a promising technology in Intelligent Transportation Systems (ITSs) to improve safety and driving efficiency. Vehicle-to-everything (V2X) technology enables communication among vehicles and other infrastructures. However, AVs and Internet of Vehicles (IoV) are vulnerable to different types of cyber-attacks such as denial of service, spoofing, and sniffing attacks. In this paper, an intelligent intrusion detection system (IDS) is proposed based on tree-structure machine learning models. The results from the implementation of the proposed intrusion detection system on standard data sets indicate that the system has the ability to identify various cyber-attacks in the AV networks. Furthermore, the proposed ensemble learning and feature selection approaches enable the proposed system to achieve high detection rate and low computational cost simultaneously.Comment: Accepted in IEEE Global Communications Conference (GLOBECOM) 201

    Data-driven design of fault diagnosis for three-phase PWM rectifier using random forests technique with transient synthetic features

    Full text link
    A three-phase pulse-width modulation (PWM) rectifier can usually maintain operation when open-circuit faults occur in insulated-gate bipolar transistors (IGBTs), which will lead the system to be unstable and unsafe. Aiming at this problem, based on random forests with transient synthetic features, a data-driven online fault diagnosis method is proposed to locate the open-circuit faults of IGBTs timely and effectively in this study. Firstly, by analysing the open-circuit fault features of IGBTs in the three-phase PWM rectifier, it is found that the occurrence of the fault features is related to the fault location and time, and the fault features do not always appear immediately with the occurrence of the fault. Secondly, different data-driven fault diagnosis methods are compared and evaluated, the performance of random forests algorithm is better than that of support vector machine or artificial neural networks. Meanwhile, the accuracy of fault diagnosis classifier trained by transient synthetic features is higher than that trained by original features. Also, the random forests fault diagnosis classifier trained by multiplicative features is the best with fault diagnosis accuracy can reach 98.32%. Finally, the online fault diagnosis experiments are carried out and the results demonstrate the effectiveness of the proposed method, which can accurately locate the open-circuit faults in IGBTs while ensuring system safety.Comment: IET Power Electronic

    Artificial intelligence for digital twins in energy systems and turbomachinery: development of machine learning frameworks for design, optimization and maintenance

    Get PDF
    The expression Industry4.0 identifies a new industrial paradigm that includes the development of Cyber-Physical Systems (CPS) and Digital Twins promoting the use of Big-Data, Internet of Things (IoT) and Artificial Intelligence (AI) tools. Digital Twins aims to build a dynamic environment in which, with the help of vertical, horizontal and end-to-end integration among industrial processes, smart technologies can communicate and exchange data to analyze and solve production problems, increase productivity and provide cost, time and energy savings. Specifically in the energy systems field, the introduction of AI technologies can lead to significant improvements in both machine design and optimization and maintenance procedures. Over the past decade, data from engineering processes have grown in scale. In fact, the use of more technologically sophisticated sensors and the increase in available computing power have enabled both experimental measurements and highresolution numerical simulations, making available an enormous amount of data on the performance of energy systems. Therefore, to build a Digital Twin model capable of exploring these unorganized data pools collected from massive and heterogeneous resources, new Artificial Intelligence and Machine Learning strategies need to be developed. In light of the exponential growth in the use of smart technologies in manufacturing processes, this thesis aims at enhancing traditional approaches to the design, analysis, and optimization phases of turbomachinery and energy systems, which today are still predominantly based on empirical procedures or computationally intensive CFD-based optimizations. This improvement is made possible by the implementation of Digital Twins models, which, being based primarily on the use of Machine Learning that exploits performance Big-Data collected from energy systems, are acknowledged as crucial technologies to remain competitive in the dynamic energy production landscape. The introduction of Digital Twin models changes the overall structure of design and maintenance approaches and results in modern support tools that facilitate real-time informed decision making. In addition, the introduction of supervised learning algorithms facilitates the exploration of the design space by providing easy-to-run analytical models, which can also be used as cost functions in multi-objective optimization problems, avoiding the need for time-consuming numerical simulations or experimental campaings. Unsupervised learning methods can be applied, for example, to extract new insights from turbomachinery performance data and improve designers’ understanding of blade-flow interaction. Alternatively, Artificial Intelligence frameworks can be developed for Condition-Based Maintenance, allowing the transition from preventive to predictive maintenance. This thesis can be conceptually divided into two parts. The first reviews the state of the art of Cyber-Physical Systems and Digital Twins, highlighting the crucial role of Artificial Intelligence in supporting informed decision making during the design, optimization, and maintenance phases of energy systems. The second part covers the development of Machine Learning strategies to improve the classical approach to turbomachinery design and maintenance strategies for energy systems by exploiting data from numerical simulations, experimental campaigns, and sensor datasets (SCADA). The different Machine Learning approaches adopted include clustering algorithms, regression algorithms and dimensionality reduction techniques: Autoencoder and Principal Component Analysis. A first work shows the potential of unsupervised learning approaches (clustering algorithms) in exploring a Design of Experiment of 76 numerical simulations for turbomachinery design purposes. The second work takes advantage of a nonsequential experimental dataset, measured on a rotating turbine rig characterized by 48 blades divided into 7 sectors that share the same baseline rotor geometry but have different tip designs, to infer and dissect the causal relationship among different tip geometries and unsteady aero-thermodynamic performance via a novel Machine-Learning procedure based on dimensionality reduction techniques. The last application proposes a new anomaly detection framework for gensets in DH networks, based on SCADA data that exploits and compares the performance of regression algorithms such as XGBoost and Multi-layer Perceptron

    Machine learning for the sustainable energy transition: a data-driven perspective along the value chain from manufacturing to energy conversion

    Get PDF
    According to the special report Global Warming of 1.5 °C of the IPCC, climate action is not only necessary but more than ever urgent. The world is witnessing rising sea levels, heat waves, events of flooding, droughts, and desertification resulting in the loss of lives and damage to livelihoods, especially in countries of the Global South. To mitigate climate change and commit to the Paris agreement, it is of the uttermost importance to reduce greenhouse gas emissions coming from the most emitting sector, namely the energy sector. To this end, large-scale penetration of renewable energy systems into the energy market is crucial for the energy transition toward a sustainable future by replacing fossil fuels and improving access to energy with socio-economic benefits. With the advent of Industry 4.0, Internet of Things technologies have been increasingly applied to the energy sector introducing the concept of smart grid or, more in general, Internet of Energy. These paradigms are steering the energy sector towards more efficient, reliable, flexible, resilient, safe, and sustainable solutions with huge environmental and social potential benefits. To realize these concepts, new information technologies are required, and among the most promising possibilities are Artificial Intelligence and Machine Learning which in many countries have already revolutionized the energy industry. This thesis presents different Machine Learning algorithms and methods for the implementation of new strategies to make renewable energy systems more efficient and reliable. It presents various learning algorithms, highlighting their advantages and limits, and evaluating their application for different tasks in the energy context. In addition, different techniques are presented for the preprocessing and cleaning of time series, nowadays collected by sensor networks mounted on every renewable energy system. With the possibility to install large numbers of sensors that collect vast amounts of time series, it is vital to detect and remove irrelevant, redundant, or noisy features, and alleviate the curse of dimensionality, thus improving the interpretability of predictive models, speeding up their learning process, and enhancing their generalization properties. Therefore, this thesis discussed the importance of dimensionality reduction in sensor networks mounted on renewable energy systems and, to this end, presents two novel unsupervised algorithms. The first approach maps time series in the network domain through visibility graphs and uses a community detection algorithm to identify clusters of similar time series and select representative parameters. This method can group both homogeneous and heterogeneous physical parameters, even when related to different functional areas of a system. The second approach proposes the Combined Predictive Power Score, a method for feature selection with a multivariate formulation that explores multiple sub-sets of expanding variables and identifies the combination of features with the highest predictive power over specified target variables. This method proposes a selection algorithm for the optimal combination of variables that converges to the smallest set of predictors with the highest predictive power. Once the combination of variables is identified, the most relevant parameters in a sensor network can be selected to perform dimensionality reduction. Data-driven methods open the possibility to support strategic decision-making, resulting in a reduction of Operation & Maintenance costs, machine faults, repair stops, and spare parts inventory size. Therefore, this thesis presents two approaches in the context of predictive maintenance to improve the lifetime and efficiency of the equipment, based on anomaly detection algorithms. The first approach proposes an anomaly detection model based on Principal Component Analysis that is robust to false alarms, can isolate anomalous conditions, and can anticipate equipment failures. The second approach has at its core a neural architecture, namely a Graph Convolutional Autoencoder, which models the sensor network as a dynamical functional graph by simultaneously considering the information content of individual sensor measurements (graph node features) and the nonlinear correlations existing between all pairs of sensors (graph edges). The proposed neural architecture can capture hidden anomalies even when the turbine continues to deliver the power requested by the grid and can anticipate equipment failures. Since the model is unsupervised and completely data-driven, this approach can be applied to any wind turbine equipped with a SCADA system. When it comes to renewable energies, the unschedulable uncertainty due to their intermittent nature represents an obstacle to the reliability and stability of energy grids, especially when dealing with large-scale integration. Nevertheless, these challenges can be alleviated if the natural sources or the power output of renewable energy systems can be forecasted accurately, allowing power system operators to plan optimal power management strategies to balance the dispatch between intermittent power generations and the load demand. To this end, this thesis proposes a multi-modal spatio-temporal neural network for multi-horizon wind power forecasting. In particular, the model combines high-resolution Numerical Weather Prediction forecast maps with turbine-level SCADA data and explores how meteorological variables on different spatial scales together with the turbines' internal operating conditions impact wind power forecasts. The world is undergoing a third energy transition with the main goal to tackle global climate change through decarbonization of the energy supply and consumption patterns. This is not only possible thanks to global cooperation and agreements between parties, power generation systems advancements, and Internet of Things and Artificial Intelligence technologies but also necessary to prevent the severe and irreversible consequences of climate change that are threatening life on the planet as we know it. This thesis is intended as a reference for researchers that want to contribute to the sustainable energy transition and are approaching the field of Artificial Intelligence in the context of renewable energy systems
    • …
    corecore