1,963 research outputs found

    A critical assessment of imbalanced class distribution problem: the case of predicting freshmen student attrition

    Get PDF
    Predicting student attrition is an intriguing yet challenging problem for any academic institution. Class-imbalanced data is a common in the field of student retention, mainly because a lot of students register but fewer students drop out. Classification techniques for imbalanced dataset can yield deceivingly high prediction accuracy where the overall predictive accuracy is usually driven by the majority class at the expense of having very poor performance on the crucial minority class. In this study, we compared different data balancing techniques to improve the predictive accuracy in minority class while maintaining satisfactory overall classification performance. Specifically, we tested three balancing techniques—oversampling, under-sampling and synthetic minority over-sampling (SMOTE)—along with four popular classification methods—logistic regression, decision trees, neuron networks and support vector machines. We used a large and feature rich institutional student data (between the years 2005 and 2011) to assess the efficacy of both balancing techniques as well as prediction methods. The results indicated that the support vector machine combined with SMOTE data-balancing technique achieved the best classification performance with a 90.24% overall accuracy on the 10-fold holdout sample. All three data-balancing techniques improved the prediction accuracy for the minority class. Applying sensitivity analyses on developed models, we also identified the most important variables for accurate prediction of student attrition. Application of these models has the potential to accurately predict at-risk students and help reduce student dropout rates

    Basel II compliant credit risk modelling: model development for imbalanced credit scoring data sets, loss given default (LGD) and exposure at default (EAD)

    No full text
    The purpose of this thesis is to determine and to better inform industry practitioners to the most appropriate classification and regression techniques for modelling the three key credit risk components of the Basel II minimum capital requirement; probability of default (PD), loss given default (LGD), and exposure at default (EAD). The Basel II accord regulates risk and capital management requirements to ensure that a bank holds enough capital proportional to the exposed risk of its lending practices. Under the advanced internal ratings based (IRB) approach Basel II allows banks to develop their own empirical models based on historical data for each of PD, LGD and EAD.In this thesis, first the issue of imbalanced credit scoring data sets, a special case of PD modelling where the number of defaulting observations in a data set is much lower than the number of observations that do not default, is identified, and the suitability of various classification techniques are analysed and presented. As well as using traditional classification techniques this thesis also explores the suitability of gradient boosting, least square support vector machines and random forests as a form of classification. The second part of this thesis focuses on the prediction of LGD, which measures the economic loss, expressed as a percentage of the exposure, in case of default. In this thesis, various state-of-the-art regression techniques to model LGD are considered. In the final part of this thesis we investigate models for predicting the exposure at default (EAD). For off-balance-sheet items (for example credit cards) to calculate the EAD one requires the committed but unused loan amount times a credit conversion factor (CCF). Ordinary least squares (OLS), logistic and cumulative logistic regression models are analysed, as well as an OLS with Beta transformation model, with the main aim of finding the most robust and comprehensible model for the prediction of the CCF. Also a direct estimation of EAD, using an OLS model, will be analysed. All the models built and presented in this thesis have been applied to real-life data sets from major global banking institutions

    Feature selection in credit risk modeling: an international evidence

    Get PDF
    This paper aims to discover a suitable combination of contemporary feature selection techniques and robust prediction classifiers. As such, to examine the impact of the feature selection method on classifier performance, we use two Chinese and three other real-world credit scoring datasets. The utilized feature selection methods are the least absolute shrinkage and selection operator (LASSO), multivariate adaptive regression splines (MARS). In contrast, the examined classifiers are the classification and regression trees (CART), logistic regression (LR), artificial neural network (ANN), and support vector machines (SVM). Empirical findings confirm that LASSO’s feature selection method, followed by robust classifier SVM, demonstrates remarkable improvement and outperforms other competitive classifiers. Moreover, ANN also offers improved accuracy with feature selection methods; LR only can improve classification efficiency through performing feature selection via LASSO. Nonetheless, CART does not provide any indication of improvement in any combination. The proposed credit scoring modeling strategy may use to develop policy, progressive ideas, operational guidelines for effective credit risk management of lending, and other financial institutions. The finding of this study has practical value, as to date, there is no consensus about the combination of feature selection method and prediction classifiers

    Credit Risk Management Using Automatic Machine Learning

    Get PDF
    The article presents the basic techniques of data mining implemented in typical commercial software. They were used to assess the risk of credit card debt repayment. The article assesses the quality of classification models derived from data mining techniques and compares their results with the traditional approach using a logit model to assess credit risk. It turns out that data mining models provide similar accuracy of classification compared to the logit model, but they require much less work and facilitate the automation of the process of building scoring models

    Low-Default Portfolio/One-Class Classification: A Literature Review

    Get PDF
    Consider a bank which wishes to decide whether a credit applicant will obtain credit or not. The bank has to assess if the applicant will be able to redeem the credit. This is done by estimating the probability that the applicant will default prior to the maturity of the credit. To estimate this probability of default it is first necessary to identify criteria which separate the good from the bad creditors, such as loan amount and age or factors concerning the income of the applicant. The question then arises of how a bank identifies a sufficient number of selective criteria that possess the necessary discriminatory power. As a solution, many traditional binary classification methods have been proposed with varying degrees of success. However, a particular problem with credit scoring is that defaults are only observed for a small subsample of applicants. An imbalance exists between the ratio of non-defaulters to defaulters. This has an adverse effect on the aforementioned binary classification method. Recently one-class classification approaches have been proposed to address the imbalance problem. The purpose of this literature review is three fold: (I) present the reader with an overview of credit scoring; (ii) review existing binary classification approaches; and (iii) introduce and examine one-class classification approaches

    Improving Risk Predictions by Preprocessing Imbalanced Credit Data

    Get PDF
    Imbalanced credit data sets refer to databases in which the class of defaulters is heavily under-represented in comparison to the class of non-defaulters. This is a very common situation in real-life credit scoring applications, but it has still received little attention. This paper investigates whether data resampling can be used to improve the performance of learners built from imbalanced credit data sets, and whether the effectiveness of resampling is related to the type of classifier. Experimental results demonstrate that learning with the resampled sets consistently outperforms the use of the original imbalanced credit data, independently of the classifier used
    corecore