2,854 research outputs found

    MARINE: Man-in-the-middle attack resistant trust model IN connEcted vehicles

    Get PDF
    Vehicular Ad-hoc NETwork (VANET), a novel technology holds a paramount importance within the transportation domain due to its abilities to increase traffic efficiency and safety. Connected vehicles propagate sensitive information which must be shared with the neighbors in a secure environment. However, VANET may also include dishonest nodes such as Man-in-the-Middle (MiTM) attackers aiming to distribute and share malicious content with the vehicles, thus polluting the network with compromised information. In this regard, establishing trust among connected vehicles can increase security as every participating vehicle will generate and propagate authentic, accurate and trusted content within the network. In this paper, we propose a novel trust model, namely, Man-in-the-middle Attack Resistance trust model IN connEcted vehicles (MARINE), which identifies dishonest nodes performing MiTM attacks in an efficient way as well as revokes their credentials. Every node running MARINE system first establishes trust for the sender by performing multi-dimensional plausibility checks. Once the receiver verifies the trustworthiness of the sender, the received data is then evaluated both directly and indirectly. Extensive simulations are carried out to evaluate the performance and accuracy of MARINE rigorously across three MiTM attacker models and the bench-marked trust model. Simulation results show that for a network containing 35% MiTM attackers, MARINE outperforms the state of the art trust model by 15%, 18%, and 17% improvements in precision, recall and F-score, respectively.N/A

    Development and Validation of a Proof-of-Concept Prototype for Analytics-based Malicious Cybersecurity Insider Threat in a Real-Time Identification System

    Get PDF
    Insider threat has continued to be one of the most difficult cybersecurity threat vectors detectable by contemporary technologies. Most organizations apply standard technology-based practices to detect unusual network activity. While there have been significant advances in intrusion detection systems (IDS) as well as security incident and event management solutions (SIEM), these technologies fail to take into consideration the human aspects of personality and emotion in computer use and network activity, since insider threats are human-initiated. External influencers impact how an end-user interacts with both colleagues and organizational resources. Taking into consideration external influencers, such as personality, changes in organizational polices and structure, along with unusual technical activity analysis, would be an improvement over contemporary detection tools used for identifying at-risk employees. This would allow upper management or other organizational units to intervene before a malicious cybersecurity insider threat event occurs, or mitigate it quickly, once initiated. The main goal of this research study was to design, develop, and validate a proof-of-concept prototype for a malicious cybersecurity insider threat alerting system that will assist in the rapid detection and prediction of human-centric precursors to malicious cybersecurity insider threat activity. Disgruntled employees or end-users wishing to cause harm to the organization may do so by abusing the trust given to them in their access to available network and organizational resources. Reports on malicious insider threat actions indicated that insider threat attacks make up roughly 23% of all cybercrime incidents, resulting in $2.9 trillion in employee fraud losses globally. The damage and negative impact that insider threats cause was reported to be higher than that of outsider or other types of cybercrime incidents. Consequently, this study utilized weighted indicators to measure and correlate simulated user activity to possible precursors to malicious cybersecurity insider threat attacks. This study consisted of a mixed method approach utilizing an expert panel, developmental research, and quantitative data analysis using the developed tool on simulated data set. To assure validity and reliability of the indicators, a panel of subject matter experts (SMEs) reviewed the indicators and indicator categorizations that were collected from prior literature following the Delphi technique. The SMEs’ responses were incorporated into the development of a proof-of-concept prototype. Once the proof-of-concept prototype was completed and fully tested, an empirical simulation research study was conducted utilizing simulated user activity within a 16-month time frame. The results of the empirical simulation study were analyzed and presented. Recommendations resulting from the study also be provided

    Model the System from Adversary Viewpoint: Threats Identification and Modeling

    Full text link
    Security attacks are hard to understand, often expressed with unfriendly and limited details, making it difficult for security experts and for security analysts to create intelligible security specifications. For instance, to explain Why (attack objective), What (i.e., system assets, goals, etc.), and How (attack method), adversary achieved his attack goals. We introduce in this paper a security attack meta-model for our SysML-Sec framework, developed to improve the threat identification and modeling through the explicit representation of security concerns with knowledge representation techniques. Our proposed meta-model enables the specification of these concerns through ontological concepts which define the semantics of the security artifacts and introduced using SysML-Sec diagrams. This meta-model also enables representing the relationships that tie several such concepts together. This representation is then used for reasoning about the knowledge introduced by system designers as well as security experts through the graphical environment of the SysML-Sec framework.Comment: In Proceedings AIDP 2014, arXiv:1410.322

    Detecting Malicious SQL

    Get PDF
    • …
    corecore