72,295 research outputs found

    Observation of centimetre-scale argon diffusion in alkali feldspars: implications for <sup>40</sup>Ar/<sup>39</sup>Ar thermochronology

    Get PDF
    New data from a gem-quality feldspar from Itrongay, Madagascar, record naturally occurring 40Ar/39Ar age profiles which can be numerically modelled by invoking a single diffusion mechanism and show that microtexturally simple crystals are capable of recording complex thermal histories. We present the longest directly measured, naturally produced 40Ar*-closure profiles from a single, homogeneous orthoclase feldspar. These data appear to confirm the assumption that laboratory derived diffusion parameters are valid in nature and over geological timescales. Diffusion domains are defined by crystal faces and ancient cracks, thus in gem-quality feldspars the diffusion domain size equates to the physical grain size. The data also illustrate the potential of large, gem-quality feldspars to record detailed thermal histories over tens of millions of years and such samples should be considered for future studies on the slow cooling of continental crust

    Anatomy and origin of authochthonous late Pleistocene forced regression deposits, east Coromandel inner shelf, New Zealand: implications for the development and definition of the regressive systems tract

    Get PDF
    High-resolution seismic reflection data from the east Coromandel coast, New Zealand, provide details of the sequence stratigraphy beneath an autochthonous, wave dominated inner shelf margin during the late Quaternary (0-140 ka). Since c. 1 Ma, the shelf has experienced limited subsidence and fluvial sediment input, producing a depositional regime characterised by extensive reworking of coastal and shelf sediments during glacio-eustatic sea-level fluctuations. It appears that only one complete fifth-order (c. 100 000 yr) depositional sequence is preserved beneath the inner shelf, the late Pleistocene Waihi Sequence, suggesting any earlier Quaternary sequences were mainly cannibalised into successively younger sequences. The predominantly Holocene-age Whangamata Sequence is also evident in seismic data and modern coastal deposits, and represents an incomplete depositional sequence in its early stages of formation. A prominent aspect of the sequence stratigraphy off parts of the east Coromandel coast is the presence of forced regressive deposits (FRDs) within the regressive systems tract (RST) of the late Pleistocene Waihi Sequence. The FRDs are interpreted to represent regressive barrier-shoreface sands that were sourced from erosion and onshore reworking of underlying Pleistocene sediments during the period of slow falling sea level from isotope stages 5 to 2 (c. 112-18 ka). The RST is volumetrically the most significant depositional component of the Waihi Sequence; the regressive deposits form a 15-20 m thick, sharp-based, tabular seismic unit that downsteps and progrades continuously across the inner shelf. The sequence boundary for the Waihi Sequence is placed at the most prominent, regionally correlative, and chronostratigraphically significant surface, namely an erosional unconformity characterised in many areas by large incised valleys that was generated above the RST. This unconformity is interpreted as a surface of maximum subaerial erosion generated during the last glacial lowstand (c. 18 ka). Although the base of the RST is associated with a prominent regressive surface of erosion, this is not used as the sequence boundary as it is highly diachronous and difficult to identify and correlate where FRDs are not developed. The previous highstand deposits are limited to subaerial barrier deposits preserved behind several modern Holocene barriers along the coast, while the transgressive systems tract is preserved locally as incised-valley fill deposits beneath the regressive surface of erosion at the base of the RST. Many documented late Pleistocene RSTs have been actively sourced from fluvial systems feeding the shelf and building basinward-thickening, often stacked wedges of FRDs, for which the name allochthonous FRDs is suggested. The Waihi Sequence RST is unusual in that it appears to have been sourced predominantly from reworking of underlying shelf sediments, and thus represents an autochthonous FRD. Autochthonous FRDs are also present on the Forster-Tuncurry shelf in southeast Australia, and may be a common feature in other shelf settings with low subsidence and low sediment supply rates, provided shelf gradients are not too steep, and an underlying source of unconsolidated shelf sediments is available to source FRDs. The preservation potential of such autochthonous FRDs in ancient deposits is probably low given that they are likely to be cannibalised during subsequent sea-level falls

    3D attributed models for addressing environmental and engineering geoscience problems in areas of urban regeneration : a case study in Glasgow, UK

    Get PDF
    The City of Glasgow is situated on and around the lower floodplain and inner estuary of the River Clyde in the west of Scotland, UK. Glasgow’s urban hinterland once was one of Europe’s leading centres of heavy industry, and of ship building in particular. The industries were originally fed by locally mined coal and ironstone. In common with many European cities, the heavy industries declined and Glasgow was left with a legacy of industrial dereliction, widespread undermining, and extensive vacant and contaminated sites, some the infilled sites of clay pits and sand and gravel workings

    Towards a sequence stratigraphic solution set for autogenic processes and allogenic controls: Upper Cretaceous strata, Book Cliffs, Utah, USA

    Get PDF
    Upper Cretaceous strata exposed in the Book Cliffs of east–central Utah are widely used as an archetype for the sequence stratigraphy of marginal-marine and shallow-marine deposits. Their stratal architectures are classically interpreted in terms of accommodation controls that were external to the sediment routing system (allogenic), and that forced the formation of flooding surfaces, sequence boundaries, and parasequence and parasequence-set stacking patterns. Processes internal to the sediment routing system (autogenic) and allogenic sediment supply controls provide alternatives that can plausibly explain aspects of the stratal architecture, including the following: (1) switching of wave-dominated delta lobes, expressed by the internal architecture of parasequences; (2) river avulsion, expressed by the internal architecture of multistorey fluvial sandbodies and related deposits; (3) avulsion-generated clustering of fluvial sandbodies in delta plain strata; (4) ‘autoretreat’ owing to increasing sediment storage on the delta plain as it lengthened during progradation, expressed by progradational-to-aggradational stacking of parasequences; (5) sediment supply control on the stacking of, and sediment grain-size fractionation within, parasequence sets. The various potential allogenic controls and autogenic processes are combined to form a sequence stratigraphic solution set. This approach avoids anchoring of sequence stratigraphic interpretations on a specific control and acknowledges the non-unique origin of stratal architectures

    Benefits of a 3D geological model for major tunnelling works : an example from Farringdon, east-central London, UK

    Get PDF
    In the design of major construction works, the better the ground conditions are known, the more control there is on the assessment of risks for construction, contract and personnel, and ultimately on final costs. Understanding of the ground conditions is usually expressed as a conceptual ground model that is informed by the results of desk study and of dedicated ground investigation. Using the GSI3D software, a 3D geological model (a model composed of attributed solid volumes, rather than of surfaces) can be constructed that exactly honours geologists’ interpretations of the data. The data are used in their true 3D position. The 3D model of faulted Lambeth Group (Palaeogene) strata in the area of the proposed new Crossrail Farringdon underground station, in central London, has several types of benefit. These include allowing optimum use of available ground investigation data, including third party data, with confidence. The model provides an understanding of the local geological structure that had not been possible using other commonly used methods: in particular, it shows the likely distribution of numerous water-bearing coarse deposits and their faulted offsets, which has potentially significant effects on groundwater control. The model can help to focus ground investigation, constrain design and control ris

    GPR clutter amplitude processing to detect shallow geological targets

    Get PDF
    The analysis of clutter in A-scans produced by energy randomly scattered in some specific geological structures, provides information about changes in the shallow sedimentary geology. The A-scans are composed by the coherent energy received from reflections on electromagnetic discontinuities and the incoherent waves from the scattering in small heterogeneities. The reflected waves are attenuated as consequence of absorption, geometrical spreading and losses due to reflections and scattering. Therefore, the amplitude of those waves diminishes and at certain two-way travel times becomes on the same magnitude as the background noise in the radargram, mainly produced by the scattering. The amplitude of the mean background noise is higher when the dispersion of the energy increases. Then, the mean amplitude measured in a properly selected time window is a measurement of the amount of the scattered energy and, therefore, a measurement of the increase of scatterers in the ground. This paper presents a simple processing that allows determining the Mean Amplitude of Incoherent Energy (MAEI) for each A-scan, which is represented in front of the position of the trace. This procedure is tested in a field study, in a city built on a sedimentary basin. The basin is crossed by a large number of hidden subterranean streams and paleochannels. The sedimentary structures due to alluvial deposits produce an amount of the random backscattering of the energy that is measured in a time window. The results are compared along the entire radar line, allowing the location of streams and paleochannels. Numerical models were also used in order to compare the synthetic traces with the field radargrams and to test the proposed processing methodology. The results underscore the amount of the MAEI over the streams and also the existence of a surrounding zone where the amplitude is increasing from the average value to the maximum obtained over the structure. Simulations show that this zone does not correspond to any particular geological change but is consequence of the path of the antenna that receives the scattered energy before arriving to the alluvial depositsPeer ReviewedPostprint (published version

    The anatomy of exhumed river-channel belts: Bedform to belt‐scale river kinematics of the Ruby Ranch Member, Cretaceous Cedar Mountain Formation, Utah, USA

    Get PDF
    Many published interpretations of ancient fluvial systems have relied on observations of extensive outcrops of thick successions. This paper, in contrast, demonstrates that a regional understanding of palaeoriver kinematics, depositional setting and sedimentation rates can be interpreted from local sedimentological measurements of bedform and barform strata. Dune and bar strata, channel planform geometry and bed topography are measured within exhumed fluvial strata exposed as ridges in the Ruby Ranch Member of the Cretaceous Cedar Mountain Formation, Utah, USA. The ridges are composed of lithified stacked channel belts, representing at least five or six re‐occupations of a single‐strand channel. Lateral sections reveal well‐preserved barforms constructed of subaqueous dune cross‐sets. The topography of palaeobarforms is preserved along the top surface of the outcrops. Comparisons of the channel‐belt centreline to local palaeotransport directions indicate that channel planform geometry was preserved through the re‐occupations, rather than being obscured by lateral migration. Rapid avulsions preserved the state of the active channel bed and its individual bars at the time of abandonment. Inferred minimum sedimentation durations for the preserved elements, inferred from cross‐set thickness distributions and assumed bedform migration rates, vary within a belt from one to ten days. Using only these local sedimentological measurements, the depositional setting is interpreted as a fluvial megafan, given the similarity in river kinematics. This paper provides a systematic methodology for the future synthesis of vertical and planview data, including the drone‐equipped 2020 Mars Rover mission, to exhumed fluvial and deltaic strata

    Clyde superficial deposits and bedrock models released to the ASK Network 2013 : a guide for users

    Get PDF
    This report draft provides an overview of the Clyde superficial deposits models to be released in 2013 and detail on the Central Glasgow Superficial Deposits Model currently released to the ASK network. The geological models are an interpretation of digital datasets held by the British Geological Survey. A summary of the construction and limitations of the models and a brief description of the modelled units is given. The report will be updated and revised as more models become available for release to the ASK network. More details on the models can be found in the previous reports Merritt et al. (2009), Monaghan (2012a) and Monaghan et al. (2012)
    • …
    corecore