87 research outputs found

    Comparative Study of Various Systems on Chips Embedded in Mobile Devices

    Get PDF
    Systems-on-chips (SoCs) are the latest incarnation of very large scale integration (VLSI) technology. A single integrated circuit can contain over 100 million transistors. Harnessing all this computing power requires designers to move beyond logic design into computer architecture, meet real-time deadlines, ensure low-power operation, and so on. These opportunities and challenges make SoC design an important field of research. So in the paper we will try to focus on the various aspects of SOC and the applications offered by it. Also the different parameters to be checked for functional verification like integration and complexity are described in brief. We will focus mainly on the applications of system on chip in mobile devices and then we will compare various mobile vendors in terms of different parameters like cost, memory, features, weight, and battery life, audio and video applications. A brief discussion on the upcoming technologies in SoC used in smart phones as announced by Intel, Microsoft, Texas etc. is also taken up. Keywords: System on Chip, Core Frame Architecture, Arm Processors, Smartphone

    Computer hardware basics:Intermediate Level

    Get PDF
    Данное пособие предназначено для бакалавров 1 и 2 курсов, обучающихся по направлениям "Информационная безопасность", "Прикладная математика и информатика, "Фундаментальная информатика и информационные технологии", "Прикладная информатика", "Программная инженерия" с уровнями владения языком B1, В2.11

    Parallelism and the software-hardware interface in embedded systems

    Get PDF
    This thesis by publications addresses issues in the architecture and microarchitecture of next generation, high performance streaming Systems-on-Chip through quantifying the most important forms of parallelism in current and emerging embedded system workloads. The work consists of three major research tracks, relating to data level parallelism, thread level parallelism and the software-hardware interface which together reflect the research interests of the author as they have been formed in the last nine years. Published works confirm that parallelism at the data level is widely accepted as the most important performance leverage for the efficient execution of embedded media and telecom applications and has been exploited via a number of approaches the most efficient being vectorlSIMD architectures. A further, complementary and substantial form of parallelism exists at the thread level but this has not been researched to the same extent in the context of embedded workloads. For the efficient execution of such applications, exploitation of both forms of parallelism is of paramount importance. This calls for a new architectural approach in the software-hardware interface as its rigidity, manifested in all desktop-based and the majority of embedded CPU's, directly affects the performance ofvectorized, threaded codes. The author advocates a holistic, mature approach where parallelism is extracted via automatic means while at the same time, the traditionally rigid hardware-software interface is optimized to match the temporal and spatial behaviour of the embedded workload. This ultimate goal calls for the precise study of these forms of parallelism for a number of applications executing on theoretical models such as instruction set simulators and parallel RAM machines as well as the development of highly parametric microarchitectural frameworks to encapSUlate that functionality.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Professional English for the students of Electronic Education Institute in specialty of «Informatics and Computer Technologies»

    Get PDF
    Пособие предназначено для студентов 3 курса ИнЭО, изучающих профессиональный курс английского языка по направлению 09.03.01 «Информатика и вычислительная техника»

    Clash of the Titans : impact of convergence and divergence on digital media

    Get PDF
    Thesis (S.M.M.O.T.)--Massachusetts Institute of Technology, Sloan School of Management, Management of Technology Program, 2003.Includes bibliographical references (leaves 150-153).This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.In last decade, the world was bewildered by the dazzling array of choices and offerings of digital technology. While digital convergence has created new possibilities in digital media, it has also created great uncertainty, fragmentation and threats to traditional media. This blossoming of innovations, as I will examine in this thesis, originates not only from the conversion of analog media into the digital domain, but more from a convergence of industries which results in a clash of technologies and cultures. This thesis explores the phenomenon of digital convergence and divergence and examines their impact on digital media. The questions this thesis seeks to answer are: What exactly is digital convergence? Is digital technology a kind of unifying glue as some may claim, or is it turning out to be a catalyst for greater differentiation? What kinds of dynamics will emerge when traditional industries play in each other's familiar turfs? And what kinds of strategies should digital media producers adopt in response? Observations seem to point towards a trend of initial chaos, greater divergence and severe technological fragmentation in the market. However, in that light, the results of this study suggest that collaboration between industry players to establish common standards, as well as the production of content to fit the locality, context and the consumption experience will be the keys to success in the world of digital convergence.by William Chee-Leong Lee.S.M.M.O.T

    European Information Technology Observatory 1997

    Get PDF

    Android Application Development for the Intel Platform

    Get PDF
    Computer scienc

    High-Stiffness, Lock-and-Key Heat-Reversible Locator-Snap Systems for the Design for Disassembly.

    Full text link
    The use of joints that can disengage with minimum labor, part damage, and material contamination is critical to ensure effective service, part reuse, and material recycling. This dissertation develops a general computational method for designing lock-and-key heat-reversible locator-snap systems that satisfy the aforementioned requirements. The lock-and-key concept is like a security code that allows easy disassembly when the right procedure is followed. It is realized by double-latching snaps that require force within a certain range to disengage, and multiple snaps that require heating multiple locations at different temperatures to disengage. During disassembly, thermal expansion constrained by locators and temperature gradient along the wall thickness are exploited to realize the deformation required to release the snaps. A generic optimization problem is posed to find the orientations, numbers, and locations of locators and snaps, and the numbers, locations, and sizes of heating areas, which realize the release of snaps with minimum heating and maximum stiffness, while satisfying motion and structural requirements. Screw Theory is utilized to pre-calculate the set of feasible orientations of locators and snaps that are examined during optimization. Multi-Objective Genetic Algorithm (MOGA) is used for solving the posed generic optimization problem. A parallel version, using manager-worker scheme, with active load balancing is developed to solve the generic optimization problem efficiently. The proposed algorithm selects between two parallelization schemes based on the average objective function evaluation time and either divides the population evenly over all processors or sends small patches of the population to the idle workers. The proposed heat-reversible locator-snap systems are applied to different case studies ranging from automotive bodies to consumer electronics. The first case study deals with joining internal frames and external panels in automotive bodies. Next, the proposed locator-snap systems are applied to a T-shaped DVD player enclosure, an enclosure model with complex mating line geometry, and a flat panel TV enclosure. In the later, the developed Parallel genetic algorithm is used and its performance is analyzed. In all case studies, the resulting Pareto-optimal solutions result in alternative designs with different trade-offs between the design objectives while satisfying all the constraints.Ph.D.Mechanical Engineering and Scientific ComputingUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/58479/1/mshalaby_1.pd
    corecore