4,123 research outputs found

    Applications of agent architectures to decision support in distributed simulation and training systems

    Get PDF
    This work develops the approach and presents the results of a new model for applying intelligent agents to complex distributed interactive simulation for command and control. In the framework of tactical command, control communications, computers and intelligence (C4I), software agents provide a novel approach for efficient decision support and distributed interactive mission training. An agent-based architecture for decision support is designed, implemented and is applied in a distributed interactive simulation to significantly enhance the command and control training during simulated exercises. The architecture is based on monitoring, evaluation, and advice agents, which cooperate to provide alternatives to the dec ision-maker in a time and resource constrained environment. The architecture is implemented and tested within the context of an AWACS Weapons Director trainer tool. The foundation of the work required a wide range of preliminary research topics to be covered, including real-time systems, resource allocation, agent-based computing, decision support systems, and distributed interactive simulations. The major contribution of our work is the construction of a multi-agent architecture and its application to an operational decision support system for command and control interactive simulation. The architectural design for the multi-agent system was drafted in the first stage of the work. In the next stage rules of engagement, objective and cost functions were determined in the AWACS (Airforce command and control) decision support domain. Finally, the multi-agent architecture was implemented and evaluated inside a distributed interactive simulation test-bed for AWACS Vv\u27Ds. The evaluation process combined individual and team use of the decision support system to improve the performance results of WD trainees. The decision support system is designed and implemented a distributed architecture for performance-oriented management of software agents. The approach provides new agent interaction protocols and utilizes agent performance monitoring and remote synchronization mechanisms. This multi-agent architecture enables direct and indirect agent communication as well as dynamic hierarchical agent coordination. Inter-agent communications use predefined interfaces, protocols, and open channels with specified ontology and semantics. Services can be requested and responses with results received over such communication modes. Both traditional (functional) parameters and nonfunctional (e.g. QoS, deadline, etc.) requirements and captured in service requests

    Methodological review of multicriteria optimization techniques: aplications in water resources

    Get PDF
    Multi-criteria decision analysis (MCDA) is an umbrella approach that has been applied to a wide range of natural resource management situations. This report has two purposes. First, it aims to provide an overview of advancedmulticriteriaapproaches, methods and tools. The review seeks to layout the nature of the models, their inherent strengths and limitations. Analysis of their applicability in supporting real-life decision-making processes is provided with relation to requirements imposed by organizationally decentralized and economically specific spatial and temporal frameworks. Models are categorized based on different classification schemes and are reviewed by describing their general characteristics, approaches, and fundamental properties. A necessity of careful structuring of decision problems is discussed regarding planning, staging and control aspects within broader agricultural context, and in water management in particular. A special emphasis is given to the importance of manipulating decision elements by means ofhierarchingand clustering. The review goes beyond traditionalMCDAtechniques; it describes new modelling approaches. The second purpose is to describe newMCDAparadigms aimed at addressing the inherent complexity of managing water ecosystems, particularly with respect to multiple criteria integrated with biophysical models,multistakeholders, and lack of information. Comments about, and critical analysis of, the limitations of traditional models are made to point out the need for, and propose a call to, a new way of thinking aboutMCDAas they are applied to water and natural resources management planning. These new perspectives do not undermine the value of traditional methods; rather they point to a shift in emphasis from methods for problem solving to methods for problem structuring. Literature review show successfully integrations of watershed management optimization models to efficiently screen a broad range of technical, economic, and policy management options within a watershed system framework and select the optimal combination of management strategies and associated water allocations for designing a sustainable watershed management plan at least cost. Papers show applications in watershed management model that integrates both natural and human elements of a watershed system including the management of ground and surface water sources, water treatment and distribution systems, human demands,wastewatertreatment and collection systems, water reuse facilities,nonpotablewater distribution infrastructure, aquifer storage and recharge facilities, storm water, and land use

    Supply chain management: An opportunity for metaheuristics

    Get PDF
    In today’s highly competitive and global marketplace the pressure on organizations to find new ways to create and deliver value to customers grows ever stronger. In the last two decades, logistics and supply chain has moved to the center stage. There has been a growing recognition that it is through an effective management of the logistics function and the supply chain that the goal of cost reduction and service enhancement can be achieved. The key to success in Supply Chain Management (SCM) require heavy emphasis on integration of activities, cooperation, coordination and information sharing throughout the entire supply chain, from suppliers to customers. To be able to respond to the challenge of integration there is the need of sophisticated decision support systems based on powerful mathematical models and solution techniques, together with the advances in information and communication technologies. The industry and the academia have become increasingly interested in SCM to be able to respond to the problems and issues posed by the changes in the logistics and supply chain. We present a brief discussion on the important issues in SCM. We then argue that metaheuristics can play an important role in solving complex supply chain related problems derived by the importance of designing and managing the entire supply chain as a single entity. We will focus specially on the Iterated Local Search, Tabu Search and Scatter Search as the ones, but not limited to, with great potential to be used on solving the SCM related problems. We will present briefly some successful applications.Supply chain management, metaheuristics, iterated local search, tabu search and scatter search

    Multi-Criteria Performance Evaluation and Control in Power and Energy Systems

    Get PDF
    The role of intuition and human preferences are often overlooked in autonomous control of power and energy systems. However, the growing operational diversity of many systems such as microgrids, electric/hybrid-electric vehicles and maritime vessels has created a need for more flexible control and optimization methods. In order to develop such flexible control methods, the role of human decision makers and their desired performance metrics must be studied in power and energy systems. This dissertation investigates the concept of multi-criteria decision making as a gateway to integrate human decision makers and their opinions into complex mathematical control laws. There are two major steps this research takes to algorithmically integrate human preferences into control environments: MetaMetric (MM) performance benchmark: considering the interrelations of mathematical and psychological convergence, and the potential conflict of opinion between the control designer and end-user, a novel holistic performance benchmark, denoted as MM, is developed to evaluate control performance in real-time. MM uses sensor measurements and implicit human opinions to construct a unique criterion that benchmarks the system\u27s performance characteristics. MM decision support system (DSS): the concept of MM is incorporated into multi-objective evolutionary optimization algorithms as their DSS. The DSS\u27s role is to guide and sort the optimization decisions such that they reflect the best outcome desired by the human decision-maker and mathematical considerations. A diverse set of case studies including a ship power system, a terrestrial power system, and a vehicular traction system are used to validate the approaches proposed in this work. Additionally, the MM DSS is designed in a modular way such that it is not specific to any underlying evolutionary optimization algorithm

    Improving sustainability of energy intensive sectors through multi-objective models

    Get PDF
    openGlobal energy consumption and the related carbon dioxide emissions, which represent a large share of the overall anthropogenic greenhouse gas production, are continuously increasing since most of the energy needs are still provided by fossil fuels, thus constituting one of the main issues to be addressed in the climate change mitigation agenda. To achieve the Paris Agreement’s ambitious objectives, an energy transition towards sustainable energy systems based on the new smart energy system (SES) paradigm is needed, thus integrating the various energy sources, vectors and needs within the sectors (electricity, heating, cooling, transport, etc.). However, optimal planning, design and management of complex integrated systems such as SES require to make use of proper decision support models based on multi-objective optimization techniques, since a sustainability analysis intrinsically involves environmental, economic and social aspects. Furthermore, a SES project involves several stakeholders, each driven by different and often conflicting objectives, which should be considered within such models, to remove some relevant barriers to the energy transition. Focusing on the improvement of the sustainability of the energy-intensive sectors, the main objective of this thesis is thus the development of a decision support framework based on multi-objective optimization with the aim to support the decision makers in the planning, design and management of integrated smart energy systems, while considering the different involved stakeholders. The proposed model, composed by three main phases (namely investigative, design and decision-making), has been developed by steps via its application on case studies belonging to two main topics concerning the improvement of the sustainability performance of energy-intensive sectors through the implementation of the smart energy system concept. The first main topic is representative of the context of industrial districts and concerns their sustainable energy supply based on technical solutions specifically designed for cluster of firms, allowed by geographical proximity. The other one concerns the synergic integration between industrial and urban areas, through the recovery of waste energy from industrial processes to feed municipal district heating with a carbon-free source. The case studies have been selected, within the opportunities available in the local territorial context, not only because fit for the implementation of the smart energy system concept, but also due to their suitability for the implementation of different phases of the proposed decision support system (DSS).Dottorato di ricerca in Scienze dell'ingegneria energetica e ambientaleopenCiotti, Gelli

    An Interactive Reservoir Management System for Lake Kariba

    Get PDF
    This paper presents a user-interactive decision support system (DSS) for the management of the Lake Kariba reservoir. Built in the fourth-generation computer language IFPS, the system takes into account relevant reservoir characteristics and parameters, such as the amount of hydropower generated, reservoir storage throughout the year, and the amount of water released for down-stream usage. The system blends water release rules determined previously using optimization and simulation-based scenario analyses with expert input from an experienced reservoir manager, yielding an intuitive and realistic DSS with which the reservoir manager may easily identify. The DSS also includes a Box-Jenkins time series model that forecasts future inflows. Each month, the system provides the manager with a proposed release schedule, which the manager then uses to explore and evaluate the consequences in terms of the decision criteria, over an extended period of time. The types of information provided to and sought from the manager correspond closely with actual reservoir management practice. An important characteristic of the system is that the manager can quickly explore various different potential release decisions a priori, for a variety of potential inflow scenarios, including predicted inflows for average hydrological years, as well as inflows reflecting extreme events such as drought and flood periods. The manager can compare the results of the release decisions made in the scenario analysis, both with the release strategy proposed by the system and with historical release decisions, thus aiding the manager in establishing effective reservoir management policies in practice. Thus, rather than a mechanical value, our DSS offers the manager a flexible problem analysis with suggested courses of action. We illustrate the system using example sessions with an experienced reservoir manager. While the system is designed specifically to support the management of Lake Kariba, its extension to a more general class of reservoir management problems is straightforward

    A web-based multi-perspective decision support system for information security planning

    Get PDF
    With the increasing exposure and vulnerability to cyber attacks, it becomes necessary to develop methodologies and systems that are capable of dealing with the complex and multifaceted nature of decision situations encountered in security planning and management. In this paper we present the theoretical basis, architecture and design of a web-based multi-perspective decision support system (DSS) and an underlying decision multi-criteria decision framework that is consistent with security and decision theory. The system is illustrated through a multi-stakeholder scenario that captures the complexity encountered in a multi-criteria security control selection decision problem

    Multi-objective optimisation of aircraft flight trajectories in the ATM and avionics context

    Get PDF
    The continuous increase of air transport demand worldwide and the push for a more economically viable and environmentally sustainable aviation are driving significant evolutions of aircraft, airspace and airport systems design and operations. Although extensive research has been performed on the optimisation of aircraft trajectories and very efficient algorithms were widely adopted for the optimisation of vertical flight profiles, it is only in the last few years that higher levels of automation were proposed for integrated flight planning and re-routing functionalities of innovative Communication Navigation and Surveillance/Air Traffic Management (CNS/ATM) and Avionics (CNS+A) systems. In this context, the implementation of additional environmental targets and of multiple operational constraints introduces the need to efficiently deal with multiple objectives as part of the trajectory optimisation algorithm. This article provides a comprehensive review of Multi-Objective Trajectory Optimisation (MOTO) techniques for transport aircraft flight operations, with a special focus on the recent advances introduced in the CNS+A research context. In the first section, a brief introduction is given, together with an overview of the main international research initiatives where this topic has been studied, and the problem statement is provided. The second section introduces the mathematical formulation and the third section reviews the numerical solution techniques, including discretisation and optimisation methods for the specific problem formulated. The fourth section summarises the strategies to articulate the preferences and to select optimal trajectories when multiple conflicting objectives are introduced. The fifth section introduces a number of models defining the optimality criteria and constraints typically adopted in MOTO studies, including fuel consumption, air pollutant and noise emissions, operational costs, condensation trails, airspace and airport operations
    corecore