2,304 research outputs found

    Hardware prototyping and validation of a W-ΔDOR digital signal processor

    Get PDF
    Microwave tracking, usually performed by on ground processing of the signals coming from a spacecraft, represents a crucial aspect in every deep-space mission. Various noise sources, including receiver noise, affect these signals, limiting the accuracy of the radiometric measurements obtained from the radio link. There are several methods used for spacecraft tracking, including the Delta-Differential One-Way Ranging (ΔDOR) technique. In the past years, European Space Agency (ESA) missions relied on a narrowband ΔDOR system for navigation in the cruise phase. To limit the adverse effect of nonlinearities in the receiving chain, an innovative wideband approach to ΔDOR measurements has recently been proposed. This work presents the hardware implementation of a new version of the ESA X/Ka Deep Space Transponder based on the new tracking technique named Wideband ΔDOR (W-ΔDOR). The architecture of the new transponder guarantees backward compatibility with narrowband ΔDOR

    An evaluation of different DLP alternatives for the embedded media domain

    Get PDF
    The importance of media processing has produced a revolution in the design of embedded processors. In order to face the high computational and technological demands of near future media applications, new embedded processors are including features that were commonly restricted to the general purpose and the supercomputing domains. In this paper we have evaluated the performance of various DLP (Data Level Parallelism) oriented embedded architectures and analyzed quantitative data in order to determine the highlights and disadvantages of each approach. Additionally we have analyzed the differences between the explicit parallel versions of code (often based on the standard algorithms) and the high-tuned, non-vectorizable versions usually found in real multimedia programs. We will show that sub-word SIMD architectures (like MMX) are a very costeffective solution, and that, while long vector architectures provide few improvements at a very high cost, a smart combination between vector and SIMD-like architectures is the alternative that leverages best performance at a reasonable cost. We will also show that the memory latency tolerance, typical of vector architectures, is partially compensated by the worse spatial locality found when executing vector code.Postprint (author's final draft

    Trends in hardware architecture for mobile devices

    Get PDF
    In the last ten years, two main factors have fueled the steady growth in sales of mobile computing and communication devices: a) the reduction of the footprint of the devices themselves, such as cellular handsets and small computers; and b) the success in developing low-power hardware which allows the devices to operate autonomously for hours or even days. In this review, I show that the first generation of mobile devices was DSP centric – that is, its architecture was based in fast processing of digitized signals using low- power, yet numerically powerful DSPs. However, the next generation of mobile devices will be built around DSPs and low power microprocessor cores for general processing applications. Mobile devices will become data-centric. The main challenge for designers of such hybrid architectures is to increase the computational performance of the computing unit, while keeping power constant, or even reducing it. This report shows that low-power mobile hardware architectures design goes hand in hand with advances in compiling techniques. We look at the synergy between hardware and software, and show that a good balance between both can lead to innovative lowpower processor architectures

    Processor evaluation for low power frequency converter product family

    Get PDF
    Tässä työssä tutkitaan markkinoilla olevia tai lähitulevaisuudessa markkinoille saapuvia prosessoreja käytettäväksi pienitehoisissa taajuusmuuttajissa. Tutkimuksen tarkoitus on selvittää prosessorin sopivuutta sovellukseen, jossa hinta on merkittävä tekijä. Tutkimuksessa esitettyjen vaatimusten perusteella houkuttelevimmat prosessorit otetaan tarkempaan tutkimukseen. Tarkemman selvityksen jälkeen vaatimuksia teknisesti mahdollisimman tarkasti vastaavat prosessorit pyydettiin valmistajalta testattavaksi. Testaaminen suoritettiin lopulta viidelle eri prosessorille, joista kaksi perustui samaan ytimeen. Testaamisen tavoitteena on selvittää prosessorin sopivuus käyttökohteeseensa. Sopivuus testattiin suorittamalla prosessoreissa taajuusmuuttajakäyttöä mallintavaa testikoodia. Tuloksina testikoodin ajamisesta saatiin tietyissä aliohjelmissa kulutettu aika sekä kulutetut kellosyklit. Suorituskyvyn lisäksi testaukseen kuului prosessorikohtaisen kääntäjän aikaansaaman koodin koko. Aliohjelmat sisälsivät sekä aritmeettisia, että loogisia operaatioita, joiden kombinaationa mahdollisimman hyvä sopivuus saatiin selvitettyä.The aim of this thesis is to study processors to be used in a low power frequency converter. Processors under investigation must be currently or in the near future in the market. The purpose is to examine suitability of a processor to an application in which price is an essential factor. The requirements presented in this study will determine which processor will be reviewed more closely. After a precise review, processor vendors was asked to provide as corresponding device as possible to a test. Testing was accomplished eventually with five different processors of which two were based on a same core. The aim of the testing was to investigate suitability of the processors to their target task. Suitability was tested by executing code that models frequency converter application. As a result, spent time and clock cycles are presented in certain functions. In addition to performance, the testing included evaluation of the size of the output code the compilers created. Functions under test consisted of a combination of arithmetic and logic operations that was used to interpret the suitability of the processor

    The Chameleon Architecture for Streaming DSP Applications

    Get PDF
    We focus on architectures for streaming DSP applications such as wireless baseband processing and image processing. We aim at a single generic architecture that is capable of dealing with different DSP applications. This architecture has to be energy efficient and fault tolerant. We introduce a heterogeneous tiled architecture and present the details of a domain-specific reconfigurable tile processor called Montium. This reconfigurable processor has a small footprint (1.8 mm2^2 in a 130 nm process), is power efficient and exploits the locality of reference principle. Reconfiguring the device is very fast, for example, loading the coefficients for a 200 tap FIR filter is done within 80 clock cycles. The tiles on the tiled architecture are connected to a Network-on-Chip (NoC) via a network interface (NI). Two NoCs have been developed: a packet-switched and a circuit-switched version. Both provide two types of services: guaranteed throughput (GT) and best effort (BE). For both NoCs estimates of power consumption are presented. The NI synchronizes data transfers, configures and starts/stops the tile processor. For dynamically mapping applications onto the tiled architecture, we introduce a run-time mapping tool

    Advanced sensors technology survey

    Get PDF
    This project assesses the state-of-the-art in advanced or 'smart' sensors technology for NASA Life Sciences research applications with an emphasis on those sensors with potential applications on the space station freedom (SSF). The objectives are: (1) to conduct literature reviews on relevant advanced sensor technology; (2) to interview various scientists and engineers in industry, academia, and government who are knowledgeable on this topic; (3) to provide viewpoints and opinions regarding the potential applications of this technology on the SSF; and (4) to provide summary charts of relevant technologies and centers where these technologies are being developed

    Baseband analog front-end and digital back-end for reconfigurable multi-standard terminals

    Get PDF
    Multimedia applications are driving wireless network operators to add high-speed data services such as Edge (E-GPRS), WCDMA (UMTS) and WLAN (IEEE 802.11a,b,g) to the existing GSM network. This creates the need for multi-mode cellular handsets that support a wide range of communication standards, each with a different RF frequency, signal bandwidth, modulation scheme etc. This in turn generates several design challenges for the analog and digital building blocks of the physical layer. In addition to the above-mentioned protocols, mobile devices often include Bluetooth, GPS, FM-radio and TV services that can work concurrently with data and voice communication. Multi-mode, multi-band, and multi-standard mobile terminals must satisfy all these different requirements. Sharing and/or switching transceiver building blocks in these handsets is mandatory in order to extend battery life and/or reduce cost. Only adaptive circuits that are able to reconfigure themselves within the handover time can meet the design requirements of a single receiver or transmitter covering all the different standards while ensuring seamless inter-interoperability. This paper presents analog and digital base-band circuits that are able to support GSM (with Edge), WCDMA (UMTS), WLAN and Bluetooth using reconfigurable building blocks. The blocks can trade off power consumption for performance on the fly, depending on the standard to be supported and the required QoS (Quality of Service) leve
    corecore