495 research outputs found

    A DSP Based H.264 Decoder for a Multi-Format IP Set-Top Box

    Get PDF
    In this paper, the implementation of a digital signal processor (DSP) based H.264 decoder for a multi-format set-top box is described. Baseline and main profiles are supported. Using several software optimization techniques, the decoder has been fitted into a low-cost DSP. The decoder alone has been tested in simulation, achieving real-time performance with a 600 MHz system clock. Moreover, it has been integrated in a multi-format IP set-top box allowing the implementation of actual environment tests with excellent results. Finally, the decoder has been ported to a latest generation DSP

    A DSP based SVC IP STB using open SVC decoder

    Get PDF
    International audienceIn this paper, a implementation of a DSP-based IP set-top box (IP-STB) to decode CIF sequences compliant with the new Scalable Video Coding standard (14496-10 Amd 3) using Open SVC Decoder (OSD) is presented. The OSD software, designed for the PC environment, has been integrated into a previously developed IP-STB prototype. About 15 CIF frames per second can be decoded with the IP-STB

    Signal processing for improved MPEG-based communication systems

    Get PDF

    A DSP based H.264/SVC decoder for a multimedia terminal

    Get PDF
    International audienceIn this paper, the implementation of a DSP-based video decoder compliant with the H.264/SVC standard (14496-10 Annex G) is presented. A PC-based decoder implementation has been ported to a commercial DSP. Performance optimizations have been carried out improving the initial version performance about 40% and reaching real time for CIF sequences. Moreover, the performance has been characterized using H.264/SVC sequences with different kinds of scalabilities and different bitrates. This decoder will be the core of a multimedia terminal that will trade off energy against quality of experience

    Low-Power Embedded Design Solutions and Low-Latency On-Chip Interconnect Architecture for System-On-Chip Design

    Get PDF
    This dissertation presents three design solutions to support several key system-on-chip (SoC) issues to achieve low-power and high performance. These are: 1) joint source and channel decoding (JSCD) schemes for low-power SoCs used in portable multimedia systems, 2) efficient on-chip interconnect architecture for massive multimedia data streaming on multiprocessor SoCs (MPSoCs), and 3) data processing architecture for low-power SoCs in distributed sensor network (DSS) systems and its implementation. The first part includes a low-power embedded low density parity check code (LDPC) - H.264 joint decoding architecture to lower the baseband energy consumption of a channel decoder using joint source decoding and dynamic voltage and frequency scaling (DVFS). A low-power multiple-input multiple-output (MIMO) and H.264 video joint detector/decoder design that minimizes energy for portable, wireless embedded systems is also designed. In the second part, a link-level quality of service (QoS) scheme using unequal error protection (UEP) for low-power network-on-chip (NoC) and low latency on-chip network designs for MPSoCs is proposed. This part contains WaveSync, a low-latency focused network-on-chip architecture for globally-asynchronous locally-synchronous (GALS) designs and a simultaneous dual-path routing (SDPR) scheme utilizing path diversity present in typical mesh topology network-on-chips. SDPR is akin to having a higher link width but without the significant hardware overhead associated with simple bus width scaling. The last part shows data processing unit designs for embedded SoCs. We propose a data processing and control logic design for a new radiation detection sensor system generating data at or above Peta-bits-per-second level. Implementation results show that the intended clock rate is achieved within the power target of less than 200mW. We also present a digital signal processing (DSP) accelerator supporting configurable MAC, FFT, FIR, and 3-D cross product operations for embedded SoCs. It consumes 12.35mW along with 0.167mm2 area at 333MHz

    Flexi-WVSNP-DASH: A Wireless Video Sensor Network Platform for the Internet of Things

    Get PDF
    abstract: Video capture, storage, and distribution in wireless video sensor networks (WVSNs) critically depends on the resources of the nodes forming the sensor networks. In the era of big data, Internet of Things (IoT), and distributed demand and solutions, there is a need for multi-dimensional data to be part of the Sensor Network data that is easily accessible and consumable by humanity as well as machinery. Images and video are expected to become as ubiquitous as is the scalar data in traditional sensor networks. The inception of video-streaming over the Internet, heralded a relentless research for effective ways of distributing video in a scalable and cost effective way. There has been novel implementation attempts across several network layers. Due to the inherent complications of backward compatibility and need for standardization across network layers, there has been a refocused attention to address most of the video distribution over the application layer. As a result, a few video streaming solutions over the Hypertext Transfer Protocol (HTTP) have been proposed. Most notable are Apple’s HTTP Live Streaming (HLS) and the Motion Picture Experts Groups Dynamic Adaptive Streaming over HTTP (MPEG-DASH). These frameworks, do not address the typical and future WVSN use cases. A highly flexible Wireless Video Sensor Network Platform and compatible DASH (WVSNP-DASH) are introduced. The platform's goal is to usher video as a data element that can be integrated into traditional and non-Internet networks. A low cost, scalable node is built from the ground up to be fully compatible with the Internet of Things Machine to Machine (M2M) concept, as well as the ability to be easily re-targeted to new applications in a short time. Flexi-WVSNP design includes a multi-radio node, a middle-ware for sensor operation and communication, a cross platform client facing data retriever/player framework, scalable security as well as a cohesive but decoupled hardware and software design.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Reconfigurable Instruction Cell Architecture Reconfiguration and Interconnects

    Get PDF
    • 

    corecore