4 research outputs found

    Evaluation of Resilience of randomized RNS implementation

    Get PDF
    Randomized moduli in Residue Number System (RNS) generate effectively large noise and make quite difficult to attack a secret key KK from only few observations of Hamming distances H=(H0,...,Hd−1)H=(H_0, ..., H_{d-1}) that result from the changes on the state variable. Since Hamming distances have gaussian distribution and most of the statistic tests, like NIST\u27s ones, evaluate discrete and uniform distribution, we choose to use side-channel attacks as a tool in order to evaluate randomisation of Hamming distances . This paper analyses the resilience against Correlation Power Analysis (CPA), Differential Power Analysis (DPA) when the cryptographic system is protected against Simple Power Analysis (SPA) by a Montgomery Powering Ladder (MPL). While both analysis use only information on the current state, DPA Square crosses the information of all the states. We emphasize that DPA Square performs better than DPA and CPA and we show that the number of observations SS needed to perform an attack increases with respect to the number of moduli nn. For Elliptic Curves Cryptography (ECC) and using a Monte Carlo simulation, we conjecture that S=O((2n)!/(n!)2)S = O((2n)!/(n!)^2)

    Key Randomization Countermeasures to Power Analysis Attacks on Elliptic Curve Cryptosystems

    Get PDF
    It is essential to secure the implementation of cryptosystems in embedded devices agains side-channel attacks. Namely, in order to resist differential (DPA) attacks, randomization techniques should be employed to decorrelate the data processed by the device from secret key parts resulting in the value of this data. Among the countermeasures that appeared in the literature were those that resulted in a random representation of the key known as the binary signed digit representation (BSD). We have discovered some interesting properties related to the number of possible BSD representations for an integer and we have proposed a different randomization algorithm. We have also carried our study to the Ï„\tau-adic representation of integers which is employed in elliptic curve cryptosystems (ECCs) using Koblitz curves. We have then dealt with another randomization countermeasure which is based on randomly splitting the key. We have investigated the secure employment of this countermeasure in the context of ECCs
    corecore