11,756 research outputs found

    A DNA-Based Archival Storage System

    Get PDF
    Abstract Demand for data storage is growing exponentially, but the capacity of existing storage media is not keeping up. Using DNA to archive data is an attractive possibility because it is extremely dense, with a raw limit of 1 exabyte/mm 3 (10 9 GB/mm 3 ), and long-lasting, with observed half-life of over 500 years. This paper presents an architecture for a DNA-based archival storage system. It is structured as a key-value store, and leverages common biochemical techniques to provide random access. We also propose a new encoding scheme that offers controllable redundancy, trading off reliability for density. We demonstrate feasibility, random access, and robustness of the proposed encoding with wet lab experiments involving 151 kB of synthesized DNA and a 42 kB randomaccess subset, and simulation experiments of larger sets calibrated to the wet lab experiments. Finally, we highlight trends in biotechnology that indicate the impending practicality of DNA storage for much larger datasets

    On Optimal Family of Codes for Archival DNA Storage

    Full text link
    DNA based storage systems received attention by many researchers. This includes archival and re-writable random access DNA based storage systems. In this work, we have developed an efficient technique to encode the data into DNA sequence by using non-linear families of ternary codes. In particular, we proposes an algorithm to encode data into DNA with high information storage density and better error correction using a sub code of Golay code. Theoretically, 115 exabytes (EB) data can be stored in one gram of DNA by our method.Comment: Supplementary file and the software DNA Cloud 2.0 is available at http://www.guptalab.org/dnacloud This is the preliminary version of the paper that appeared in Proceedings of IWSDA 2015, pp. 143--14

    Cold Storage Data Archives: More Than Just a Bunch of Tapes

    Full text link
    The abundance of available sensor and derived data from large scientific experiments, such as earth observation programs, radio astronomy sky surveys, and high-energy physics already exceeds the storage hardware globally fabricated per year. To that end, cold storage data archives are the---often overlooked---spearheads of modern big data analytics in scientific, data-intensive application domains. While high-performance data analytics has received much attention from the research community, the growing number of problems in designing and deploying cold storage archives has only received very little attention. In this paper, we take the first step towards bridging this gap in knowledge by presenting an analysis of four real-world cold storage archives from three different application domains. In doing so, we highlight (i) workload characteristics that differentiate these archives from traditional, performance-sensitive data analytics, (ii) design trade-offs involved in building cold storage systems for these archives, and (iii) deployment trade-offs with respect to migration to the public cloud. Based on our analysis, we discuss several other important research challenges that need to be addressed by the data management community

    D3.2 Cost Concept Model and Gateway Specification

    Get PDF
    This document introduces a Framework supporting the implementation of a cost concept model against which current and future cost models for curating digital assets can be benchmarked. The value built into this cost concept model leverages the comprehensive engagement by the 4C project with various user communities and builds upon our understanding of the requirements, drivers, obstacles and objectives that various stakeholder groups have relating to digital curation. Ultimately, this concept model should provide a critical input to the development and refinement of cost models as well as helping to ensure that the curation and preservation solutions and services that will inevitably arise from the commercial sector as ‘supply’ respond to a much better understood ‘demand’ for cost-effective and relevant tools. To meet acknowledged gaps in current provision, a nested model of curation which addresses both costs and benefits is provided. The goal of this task was not to create a single, functionally implementable cost modelling application; but rather to design a model based on common concepts and to develop a generic gateway specification that can be used by future model developers, service and solution providers, and by researchers in follow-up research and development projects.<p></p> The Framework includes:<p></p> • A Cost Concept Model—which defines the core concepts that should be included in curation costs models;<p></p> • An Implementation Guide—for the cost concept model that provides guidance and proposes questions that should be considered when developing new cost models and refining existing cost models;<p></p> • A Gateway Specification Template—which provides standard metadata for each of the core cost concepts and is intended for use by future model developers, model users, and service and solution providers to promote interoperability;<p></p> • A Nested Model for Digital Curation—that visualises the core concepts, demonstrates how they interact and places them into context visually by linking them to A Cost and Benefit Model for Curation.<p></p> This Framework provides guidance for data collection and associated calculations in an operational context but will also provide a critical foundation for more strategic thinking around curation such as the Economic Sustainability Reference Model (ESRM).<p></p> Where appropriate, definitions of terms are provided, recommendations are made, and examples from existing models are used to illustrate the principles of the framework

    A note on the use of FTAâ„¢ technology for storage of blood samples for DNA analysis and removal of PCR inhibitors

    Get PDF
    peer-reviewedFTAâ„¢ technology is widely used across many molecular disciplines for sample capture, storage and analysis. The use of this technology for the long-term storage of blood samples for DNA analysis was examined as well as its potential to remove inhibitors from DNA samples previously extracted from blood with PCR inhibitors remaining. It was found that blood spots stored on FTAâ„¢ cards for 8 years at room temperature gave successful PCR products and that FTAâ„¢ cards are a useful tool for removing substances in samples which interfere with or inhibit, the PCR reaction
    • …
    corecore