1,988 research outputs found

    Low-Jitter Clock Multiplication: a Comparioson between PLLs and DLLs

    Get PDF
    This paper shows that, for a given power budget, a practical phase-locked loop (PLL)-based clock multiplier generates less jitter than a delay-locked loop (DLL) equivalent. This is due to the fact that the delay cells in a PLL ring-oscillator can consume more power per cell than their counterparts in the DLL. We can show that this effect is stronger than the notorious jitter accumulation effect that occurs in the voltage-controlled oscillator (VCO) of a PLL. First, an analysis of the stochastic-output jitter of the architectures, due to the most important noise sources, is presented. Then, another important source of jitter in a DLL-based clock multiplier is treated, namely the stochastic mismatch in the delay cells which compose the DLL voltage-controlled delay line (VCDL). An analysis is presented that relates the stochastic spread of the delay of the cells to the output jitter of the clock multiplier. A circuit design technique, called impedance level scaling, is then presented which allows the designer to optimize the noise and mismatch behavior of a circuit, independently from other specifications such as speed and linearity. Applying this technique on a delay cell design yields a direct tradeoff between noise induced jitter and power usage, and between stochastic mismatch induced jitter and power usage

    Spur-reduction techniques for PLLs using sub-sampling phase detection

    Get PDF
    A low-spur sub-sampling PLL exploits an amplitude-controlled charge pump which is immune to current source mismatch. A DLL/PLL dual-loop architecture and buffering reduces the disturbance of the sampler to the VCO. The 2.2GHz PLL in 0.18-μm CMOS achieves -121dBc/Hz in-band phase noise at 200kHz and consumes 3.8mW. The worst-case reference spur measured on 20 samples is -80dBc.\u

    Digitally programmable delay-locked-loop with adaptive charge pump current for UWB radar system

    Get PDF
    Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e ComputadoresThe objective of this thesis is to study and design a digitally programmable delay locked loop for a UWB radar sensor in 0.13 m CMOS technology.. Almost all logic systems have a main clock signal in order to provide a common timing reference for all of the components in the system. In certain cases it is necessary to have rising (or falling) edges at precise time instants, different from the ones in the main clock. To create those new timing edges at the appropriate time it is necessary to use delay circuits or delay lines. In the case of the radar system its necessary to generate a clock signal with a variable delay. This delay is relative to the transmit clock signal and is used to determine the target distance. Traditionally, delay lines are realized using a cascade of delay elements and are typically inserted into a delay-locked-loop (DLL) to guaranty that the delay is not affected by process and temperature variations. A DLL works in a similar way to a Phase Locked Loop (PLL). In order to facilitate the operation of the radar system, it is important that the delay value should be digitally programmable. To achieve a digitally programmable delay with a large linearity (independent from matching errors), the architecture of the system is constituted by a digital modulator that controls a 1-bit digital to time converter, whose output will be filtered by the DLL, thus producing the delayed clock signal. The electronic sub-blocks necessary to build this circuit are describe in detail as the proposed architectures. These circuits are implemented using differential clock signals in order to reduce the noise level in the radar system. Design and simulation results of the digitally programmable DLL shows a high output jitter noise for large delays. In order to improve this results a new architecture is proposed. Conventional DLL’s have a predefined charge pump current. The new architecture will make the charge pump current variable. Simulations results will show a improved jitter noise and delay error

    A four channel, self-calibrating, high resolution, time to digital converter

    Get PDF
    A four channel, self-calibrating, High Resolution Time to Digital Converter (HRTDC) with an RMS error of 35 ps over a dynamic range of 3.2 \mu s has been developed. Its architecture is based on an arr ay of delay locked loops and an 8-bit coarse time counter driven by an 80 MHz reference clock. Time measurements are buffered in two time registers per channel followed by a common 32 words deep read- out FIFO. The HRTDC has been built in a 0.7 \mu m CMOS process using 23 mm^2 of silicon area
    • …
    corecore