2 research outputs found

    A DHT-Based Multicarrier Modulation System with Pairwise ML Detection

    Get PDF
    This paper presents a complex-valued discrete multicarrier modulation (MCM) system based on the real-valued discrete Hartley transform (DHT) and its inverse (IDHT). Unlike the conventional discrete Fourier transform (DFT), the DHT cannot diagonalize multipath fading channels due to its inherent properties, and this results in mutual interference between subcarriers of the same mirror-symmetrical pair. We explore this interference pattern in order to seek an optimal solution to utilize channel diversity for enhancing the bit error rate (BER) performance of the system. It is shown that the optimal channel diversity gain can be achieved via pairwise maximum likelihood (ML) detection, taking into account not only the subcarrier's own channel quality but also the channel state information of its mirror-symmetrical peer. Performance analysis indicates that DHT-based MCM can mitigate fast fading effects by averaging channel power gains of each mirror-symmetrical pair of subcarriers. Simulation results show that the proposed scheme has a substantial improvement in BER over the conventional DFT-based MCM system

    Synchronization Techniques for OFDM

    Get PDF
    FDMA, TDMA and CDMA are the well known multiplexing techniques used in wireless communication systems. While working with the wireless systems using these techniques various problems encountered are (1) multi-path fading (2) time dispersion which lead to intersymbol interference (ISI) (3) lower bit rate capacity (4) requirement of larger transmit power for high bit rate and (5) less spectral efficiency. In a typical terrestrial broadcasting, the transmitted signal arrives at the receiver using various paths of different lengths. Since multiple versions of the signal interfere with each other, it becomes difficult to extract the original information. The use of orthogonal frequency division multiplexing (OFDM) technique provides better solution for the above mentioned problems. OFDM technique distributes the data over a large number of carriers that are spaced apart at precise frequencies. This spacing provides the "orthogonality", which prevents the demodulator from seeing frequencies other than their own. The benefits of OFDM are high spectral efficiency, resiliency of RF interference, and lower multi-path distortion. OFDM is a powerful modulation technique that is capable of high data rate and is able to eliminate ISI. The use of FFT technique to implement modulation and demodulation functions makes it computationally more efficient. The OFDM based wireless communication system design includes the design of OFDM transmitter, and OFDM receiver. Using MATLAB, simulation of OFDM was done with different modulation techniques using different transform techniques. The digital modulation schemes such as BPSK and QPSK were From the simulation results, it is observed that the BPSK allows the BER to be improved in a noisy channel at the cost of maximum data transmission capacity. Use of QPSK allows higher transmission capacity, but at the cost of slight increase in the probability of error. From the results, use of OFDM with QPSK is beneficial for short distance transmission link, whereas for long distance transmission link OFDM with BPSK will be preferable. Maximum likelihood Estimation method is used for the prediction of timing and frequency offsets introduced by channel.It has been shown that ML estimation method improves the performance of the system very effectively. There are several other techniques also for prediction of timing and frequency offsets of an OFDM system., but in this paper ML is main area of consideratio
    corecore