40 research outputs found

    An Exhaustive Study of the Workspaces Tolopogies of all 3R Orthogonal Manipulators with Geometric Simplifications

    Get PDF
    International audienceThis paper proposes a classification of three-revolute orthogonal manipulators that have at least one of their DH parameters equal to zero. This classification is based on the topology of their workspace. The workspace is characterized in a half-cross section by the singular curves. The workspace topology is defined by the number of cusps and nodes that appear on these singular curves. The manipulators are classified into different types with similar kinematic properties. Each type is evaluated according to interesting kinematic properties such as, whether the workspace is fully reachable with four inverse kinematic solutions or not, the existence of voids, and the feasibility of continuous trajectories in the workspace. It is found that several orthogonal manipulators have a "well-connected" workspace, that is, their workspace is fully accessible with four inverse kinematic solutions and any continuous trajectory is feasible. This result is of interest for the design of alternative manipulator geometries

    Advanced Strategies for Robot Manipulators

    Get PDF
    Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional control methods cannot be efficient, and advanced control strategies with considering special constraints are needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm until now, there are still many novel aspects which have to be explored
    corecore