42 research outputs found

    Throughput and Link Design Choices for Communication over LED Optical Wireless Channels

    Get PDF

    Index Modulation-Aided OFDM for Visible Light Communications

    Get PDF
    Index modulation-aided orthogonal frequency-division multiplexing(IM-OFDM) is a promising modulation technique to achieve high spectral and energy efficiency. In this chapter, the conventional optical OFDM schemes are firstly reviewed, followed by the principles of IM-OFDM. The application of IM-OFDM in visible light communication (VLC) systems is introduced, and its performance is compared with conventional optical OFDM, which verifies its superiority. Finally, the challenges and opportunities of IM-OFDM are discussed for the VLC applications

    Energy efficient visible light communications relying on amorphous cells

    No full text
    In this paper, we design an energy efficient indoor Visible Light Communications (VLC) system from a radically new perspective based on an amorphous user-to-network association structure. Explicitly, this intriguing problem is approached from three inter-linked perspectives, considering the cell formation, link-level transmission and system-level optimisation, critically appraising the related optical constraints. To elaborate, apart from proposing hitherto unexplored Amorphous Cells (A-Cells), we employ a powerful amalgam of Asymmetrically Clipped Optical Orthogonal Frequency Division Multiplexing (ACO-OFDM) and transmitter pre-coding aided Multi-Input Single-Output (MISO) transmission. As far as the overall systemlevel optimisation is concerned, we propose a low-complexity solution dispensing with the classic Dinkelbach’s algorithmic structure. Our numerical study compares a range of different cell formation strategies and investigates diverse design aspects of the proposed A-Cells. Specifically, our results show that the A-Cells proposed are capable of achieving a much higher energy efficiency per user compared to that of the conventional cell formation for a range of practical Field of Views (FoVs) angles

    A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications

    Get PDF
    The field of visible light communications (VLC) has gained significant interest over the last decade, in both fibre and free-space embodiments. In fibre systems, the availability of low cost plastic optical fibre (POF) that is compatible with visible data communications has been a key enabler. In free-space applications, the availability of hundreds of THz of the unregulated spectrum makes VLC attractive for wireless communications. This paper provides an overview of the recent developments in VLC systems based on gallium nitride (GaN) light-emitting diodes (LEDs), covering aspects from sources to systems. The state-of-the-art technology enabling bandwidth of GaN LEDs in the range of >400 MHz is explored. Furthermore, advances in key technologies, including advanced modulation, equalisation, and multiplexing that have enabled free-space VLC data rates beyond 10 Gb/s are also outlined

    Spectrum and energy efficient digital modulation techniques for practical visible light communication systems

    Get PDF
    The growth in mobile data traffic is rapidly increasing in an unsustainable direction given the radio frequency (RF) spectrum limits. Visible light communication (VLC) offers a lucrative solution based on an alternative license-free frequency band that is safe to use and inexpensive to utilize. Improving the spectral and energy efficiency of intensity modulation and direct detection (IM/DD) systems is still an on-going challenge in VLC. The energy efficiency of inherently unipolar modulation techniques such as pulse-amplitude modulation discrete multitone modulation (PAM-DMT) and asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) degrades at high spectral efficiency. Two novel superposition modulation techniques are proposed in this thesis based on PAM-DMT and ACO-OFDM. In addition, a practical solution based on the computationally efficient augmented spectral efficiency discrete multi-tone (ASE-DMT) is proposed. The system performance of the proposed superposition modulation techniques offers significant electrical and optical power savings with up to 8 dB in the electrical signal-to-noise ratio (SNR) when compared with DC-biased optical orthogonal frequency division multiplexing (DCO-OFDM). The theoretical bit error ratio (BER) performance bounds for all of the proposed modulation techniques are in agreement with the Monte-Carlo simulation results. The proposed superposition modulation techniques are promising candidates for spectrum and energy efficient IM/DD systems. Two experimental studies are presented for a VLC system based on DCO-OFDM with adaptive bit and energy loading. Micrometer-sized Gallium Nitride light emitting diode (m-LED) and light amplification by stimulated emission of radiation diode (LD) are used in these studies due to their high modulation bandwidth. Record data rates are achieved with a BER below the forward error correction (FEC) threshold at 7.91 Gb/s using the violet m-LED and at 15 Gb/s using the blue LD. These results highlight the potential of VLC systems in practical high speed communication solutions. An additional experimental study is demonstrated for the proposed superposition modulation techniques based on ASE-DMT. The experimentally achieved results confirm the theoretical and simulation based performance predictions of ASE-DMT. A significant gain of up to 17.33 dB in SNR is demonstrated at a low direct current (DC) bias. Finally, the perception that VLC systems cannot work under the presence of sunlight is addressed in this thesis. A complete framework is presented to evaluate the performance of VLC systems in the presence of solar irradiance at any given location and time. The effect of sunlight is investigated in terms of the degradations in SNR, data rate and BER. A reliable high speed communication system is achieved under the sunlight effect. An optical bandpass blue filter is shown to compensate for half of the reduced data rate in the presence of sunlight. This thesis demonstrates data rates above 1 Gb/s for a practical VLC link under strong solar illuminance measured at 50350 lux in clear weather conditions

    High speed energy efficient incoherent optical wireless communications

    Get PDF
    The growing demand for wireless communication capacity and the overutilisation of the conventional radio frequency (RF) spectrum have inspired research into using alternative spectrum regions for communication. Using optical wireless communications (OWC), for example, offers significant advantages over RF communication in terms of higher bandwidth, lower implementation costs and energy savings. In OWC systems, the information signal has to be real and non-negative. Therefore, modifications to the conventional communication algorithms are required. Multicarrier modulation schemes like orthogonal frequency division multiplexing (OFDM) promise to deliver a more efficient use of the communication capacity through adaptive bit and energy loading techniques. Three OFDM-based schemes – direct-current-biased OFDM (DCO-OFDM), asymmetrically clipped optical OFDM(ACO-OFDM), and pulse-amplitude modulated discrete multitone (PAM-DMT) – have been introduced in the literature. The current work investigates the recently introduced scheme subcarrier-index modulation OFDM as a potential energy-efficient modulation technique with reduced peak-to-average power ratio (PAPR) suitable for applications in OWC. A theoretical model for the analysis of SIM-OFDMin a linear additive white Gaussian noise (AWGN) channel is provided. A closed-form solution for the PAPR in SIM-OFDM is also proposed. Following the work on SIM-OFDM, a novel inherently unipolar modulation scheme, unipolar orthogonal frequency division multiplexing (U-OFDM), is proposed as an alternative to the existing similar schemes: ACO-OFDMand PAM-DMT. Furthermore, an enhanced U-OFDMsignal generation algorithm is introduced which allows the spectral efficiency gap between the inherently unipolar modulation schemes – U-OFDM, ACO-OFDM, PAM-DMT – and the conventionally used DCO-OFDM to be closed. This results in an OFDM-based modulation approach which is electrically and optically more efficient than any other OFDM-based technique proposed so far for intensity modulation and direct detection (IM/DD) communication systems. Non-linear distortion in the optical front-end elements is one of the major limitations for high-speed communication in OWC. This work presents a generalised approach for analysing nonlinear distortion in OFDM-based modulation schemes. The presented technique leads to a closed-form analytical solution for an arbitrary memoryless distortion of the information signal and has been proven to work for the majority of the known unipolar OFDM-based modulation techniques - DCO-OFDM, ACO-OFDM, PAM-DMT and U-OFDM. The high-speed communication capabilities of novel Gallium Nitride based μm-sized light emitting diodes (μLEDs) are investigated, and a record-setting result of 3.5Gb/s using a single 50-μm device is demonstrated. The capabilities of using such devices at practical transmission distances are also investigated, and a 1 Gb/s link using a single device is demonstrated at a distance of up to 10m. Furthermore, a proof-of-concept experiment is realised where a 50-μm LED is successfully modulated using U-OFDM and enhanced U-OFDM to achieve notable energy savings in comparison to DCO-OFDM

    Heterogeneous integration of optical wireless communications within next generation networks

    Full text link
    Unprecedented traffic growth is expected in future wireless networks and new technologies will be needed to satisfy demand. Optical wireless (OW) communication offers vast unused spectrum and high area spectral efficiency. In this work, optical cells are envisioned as supplementary access points within heterogeneous RF/OW networks. These networks opportunistically offload traffic to optical cells while utilizing the RF cell for highly mobile devices and devices that lack a reliable OW connection. Visible light communication (VLC) is considered as a potential OW technology due to the increasing adoption of solid state lighting for indoor illumination. Results of this work focus on a full system view of RF/OW HetNets with three primary areas of analysis. First, the need for network densication beyond current RF small cell implementations is evaluated. A media independent model is developed and results are presented that provide motivation for the adoption of hyper dense small cells as complementary components within multi-tier networks. Next, the relationships between RF and OW constraints and link characterization parameters are evaluated in order to define methods for fair comparison when user-centric channel selection criteria are used. RF and OW noise and interference characterization techniques are compared and common OW characterization models are demonstrated to show errors in excess of 100x when dominant interferers are present. Finally, dynamic characteristics of hyper dense OW networks are investigated in order to optimize traffic distribution from a network-centric perspective. A Kalman Filter model is presented to predict device motion for improved channel selection and a novel OW range expansion technique is presented that dynamically alters coverage regions of OW cells by 50%. In addition to analytical results, the dissertation describes two tools that have been created for evaluation of RF/OW HetNets. A communication and lighting simulation toolkit has been developed for modeling and evaluation of environments with VLC-enabled luminaires. The toolkit enhances an iterative site based impulse response simulator model to utilize GPU acceleration and achieves 10x speedup over the previous model. A software defined testbed for OW has also been proposed and applied. The testbed implements a VLC link and a heterogeneous RF/VLC connection that demonstrates the RF/OW HetNet concept as proof of concept

    Advanced DSP Techniques for High-Capacity and Energy-Efficient Optical Fiber Communications

    Get PDF
    The rapid proliferation of the Internet has been driving communication networks closer and closer to their limits, while available bandwidth is disappearing due to an ever-increasing network load. Over the past decade, optical fiber communication technology has increased per fiber data rate from 10 Tb/s to exceeding 10 Pb/s. The major explosion came after the maturity of coherent detection and advanced digital signal processing (DSP). DSP has played a critical role in accommodating channel impairments mitigation, enabling advanced modulation formats for spectral efficiency transmission and realizing flexible bandwidth. This book aims to explore novel, advanced DSP techniques to enable multi-Tb/s/channel optical transmission to address pressing bandwidth and power-efficiency demands. It provides state-of-the-art advances and future perspectives of DSP as well
    corecore