224 research outputs found

    Operation and control strategy of coupled microgrid clusters

    Get PDF
    A standalone remote area microgrid may frequently experience overloading due to lack of sufficient power generation or excessive renewable-based generation that can cause unacceptable voltage and frequency deviation. This can lead the microgrid to operate with less resiliency and reliability. Such problems are conventionally alleviated by load-shedding or renewable curtailment. Alternatively, autonomously operating microgrids in a geographical area can be provisionally connected to each other to facilitate power exchange for addressing the problems of overloading or overgeneration. The power exchange link among the microgrids can be of different types such as a three-phase ac, a single-phase ac, or a dc-link. Power electronic converters are required to interconnect such power exchange networks to the three-phase ac microgrids and control the power-sharing amongst them. Such arrangement is also essential to interconnect microgrid clusters to each other with proper isolation while maintaining autonomy if they are operating in different standards. In this thesis, the topologies, and structures of various forms of power exchange links are investigated and appropriate operation and control frameworks are established under which power exchange can take place properly. A decentralised control mechanism is employed to facilitate power-sharing without any data communication. The dynamic performance of the control mechanism for all the topologies is illustrated through simulation studies in PSIM® while the stability and robustness of the operation are evaluated using numerical studies in MATLAB®

    DC Fault Current Analyzing, Limiting, and Clearing in DC Microgrid Clusters

    Get PDF
    A new DC fault current limiter (FCL)-based circuit breaker (CB) for DC microgrid (MG) clusters is proposed in this paper. The analytical expressions of the DC fault current of a bidirectional interlink DC/DC converter in the interconnection line of two nearby DC MGs are analyzed in detail. Meanwhile, a DC fault clearing solution (based on using a DC FCL in series with a DC circuit breaker) is proposed. This structure offers low complexity, cost, and power losses. To assess the performance of the proposed method, time-domain simulation studies are carried out on a test DC MG cluster in a MATLAB/Simulink environment. The results of the proposed analytical expressions are compared with simulation results. The obtained results verify the analytical expression of the fault current and prove the effectiveness of the proposed DC fault current limiting and clearing strategy

    Performance Optimisation of Standalone and Grid Connected Microgrid Clusters

    Get PDF
    Remote areas usually supplied by isolated electricity systems known as microgrids which can operate in standalone and grid-connected mode. This research focus on reliable operation of microgrids with minimal fuel consumption and maximal renewables penetration, ensuring least voltage and frequency deviations. These problems can be solved by an optimisation-based technique. The objective function is formulated and solved with a Genetic Algorithm approach and performance of the proposal is evaluated by exhaustive numerical analyses in Matlab

    Power sharing and control strategy for provisionally coupled microgrid clusters through an isolated power exchange network

    Get PDF
    The two common mechanisms of load-shedding and renewable curtailment can prevent provisional overloading and excessive generation and the subsequent unacceptable voltage and frequency deviation in standalone microgrids (MGs), which makes MGs less resilient and reliable. However, instead of enabling load-shedding or renewable curtailment, such overloading or over-generation problems can be alleviated more efficiently and cost-effectively by provisionally interconnecting the neighboring MGs to exchange power amongst themselves. In such a scheme, the interconnected MGs can supply their local demand, as well as a portion of the demand of the adjacent MGs. In order to implement this strategy, a three-phase ac link can be used as the power exchange network, while each MG is coupled to the link through a back-to-back power electronics converter, in order to maintain the autonomy of each MG if they are eachoperated under different standards. This paper proposes a suitable decentralized power management strategy without a communication link between the MGs to achieve power-sharing amongst them and alleviate unacceptable voltage and frequency deviation along with the required control technique for the power electronic converters, which can be implemented at the primary level based on the measurement of the local parameters only. To this end, one of the converters should always regulate the dc link voltage while the other converter should operate in droop control mode when the MG is healthy and in constant PQ mode when overloaded or over-generating. Suitable status detection and mode transition algorithms and controllers were also developed and are proposed in this paper. The performance of the proposed power exchange and control mechanisms were evaluated and verified via PSIM®-based numerical simulation studies. The stability and sensitivity of the proposed power exchange topology are also analyzed against several critical design and operational parameters

    Inter-Microgrid Operation: Power Sharing, Frequency Restoration, Seamless Reconnection and Stability Analysis

    Get PDF
    Electrification in the rural areas sometimes become very challenging due to area accessibility and economic concern. Standalone Microgrids (MGs) play a very crucial role in these kinds of a rural area where a large power grid is not available. The intermittent nature of distributed energy sources and the load uncertainties can create a power mismatch and can lead to frequency and voltage drop in rural isolated community MG. In order to avoid this, various intelligent load shedding techniques, installation of micro storage systems and coupling of neighbouring MGs can be adopted. Among these, the coupling of neighbouring MGs is the most feasible in the rural area where large grid power is not available. The interconnection of neighbouring MGs has raised concerns about the safety of operation, protection of critical infrastructure, the efficiency of power-sharing and most importantly, stable mode of operation. Many advanced control techniques have been proposed to enhance the load sharing and stability of the microgrid. Droop control is the most commonly used control technique for parallel operation of converters in order to share the load among the MGs. But most of them are in the presence of large grid power, where system voltage and frequency are controlled by the stiff grid. In a rural area, where grid power is not available, the frequency and voltage control become a fundamental issue to be addressed. Moreover, for accurate load sharing a high value of droop gain should be chosen as the R/X ratio of the rural network is very high, which makes the system unstable. Therefore, the choice of droop gains is often a trade-off between power-sharing and stability. In the context, the main focus of this PhD thesis is the fundamental investigations into control techniques of inverter-based standalone neighbouring microgrids for available power sharing. It aims to develop new and improved control techniques to enhance performance and power-sharing reliability of remote standalone Microgrids. In this thesis, a power management-based droop control is proposed for accurate power sharing according to the power availability in a particular MG. Inverters can have different power setpoints during the grid-connected mode, but in the standalone mode, they all need their power setpoints to be adjusted according to their power ratings. On the basis of this, a power management-based droop control strategy is developed to achieve the power-sharing among the neighbouring microgrids. The proposed method helps the MG inverters to share the power according to its ratings and availability, which does not restrict the inverters for equal power-sharing. The paralleled inverters in coupled MGs need to work in both interconnected mode and standalone mode and should be able to transfer between modes seamlessly. An enhanced droop control is proposed to maintain the frequency and voltage of the MGs to their nominal value, which also helps the neighbouring MGs for seamless (de)coupling. This thesis also presents a mathematical model of the interconnected neighbouring microgrid for stability and robustness analysis. Finally, a laboratory prototype model of two MGs is developed to test the effectiveness of the proposed control strategies

    Stabilised Control of Converter Interfaced DERs for Reliable Operation of Microgrid and Microgrid Clusters

    Get PDF
    This thesis aims to achieve a stabilised control of converter interfaced DER for the reliable and resilient operation of microgrid and microgrid clusters. The suitability of voltage and current control for VSCs is evaluated and corrective measures are proposed to stabilise converter operation. Furthermore, the accurate power demand distribution in islanded MGs and interconnected MGs are ensured by advanced control strategies. The proposal presented in the thesis is verified both through simulation and experimental work

    Microgrids: Planning, Protection and Control

    Get PDF
    This Special Issue will include papers related to the planning, protection, and control of smart grids and microgrids, and their applications in the industry, transportation, water, waste, and urban and residential infrastructures. Authors are encouraged to present their latest research; reviews on topics including methods, approaches, systems, and technology; and interfaces to other domains such as big data, cybersecurity, human–machine, sustainability, and smart cities. The planning side of microgrids might include technology selection, scheduling, interconnected microgrids, and their integration with regional energy infrastructures. The protection side of microgrids might include topics related to protection strategies, risk management, protection technologies, abnormal scenario assessments, equipment and system protection layers, fault diagnosis, validation and verification, and intelligent safety systems. The control side of smart grids and microgrids might include control strategies, intelligent control algorithms and systems, control architectures, technologies, embedded systems, monitoring, and deployment and implementation

    Development of Robust and Dynamic Control Solutions for Energy Storage Enabled Hybrid AC/DC Microgrids

    Get PDF
    Development of Robust and Dynamic Control Solutions for Energy Storage Enabled Hybrid AC/DC Microgrid

    Development of economically viable, highly integrated, highly modular SEGIS architecture.

    Full text link
    • …
    corecore