105 research outputs found

    Condition Monitoring Methods for Large, Low-speed Bearings

    Get PDF
    In all industrial production plants, well-functioning machines and systems are required for sustained and safe operation. However, asset performance degrades over time and may lead to reduced effiency, poor product quality, secondary damage to other assets or even complete failure and unplanned downtime of critical systems. Besides the potential safety hazards from machine failure, the economic consequences are large, particularly in offshore applications where repairs are difficult. This thesis focuses on large, low-speed rolling element bearings, concretized by the main swivel bearing of an offshore drilling machine. Surveys have shown that bearing failure in drilling machines is a major cause of rig downtime. Bearings have a finite lifetime, which can be estimated using formulas supplied by the bearing manufacturer. Premature failure may still occur as a result of irregularities in operating conditions and use, lubrication, mounting, contamination, or external environmental factors. On the contrary, a bearing may also exceed the expected lifetime. Compared to smaller bearings, historical failure data from large, low-speed machinery is rare. Due to the high cost of maintenance and repairs, the preferred maintenance arrangement is often condition based. Vibration measurements with accelerometers is the most common data acquisition technique. However, vibration based condition monitoring of large, low-speed bearings is challenging, due to non-stationary operating conditions, low kinetic energy and increased distance from fault to transducer. On the sensor side, this project has also investigated the usage of acoustic emission sensors for condition monitoring purposes. Roller end damage is identified as a failure mode of interest in tapered axial bearings. Early stage abrasive wear has been observed on bearings in drilling machines. The failure mode is currently only detectable upon visual inspection and potentially through wear debris in the bearing lubricant. In this thesis, multiple machine learning algorithms are developed and applied to handle the challenges of fault detection in large, low-speed bearings with little or no historical data and unknown fault signatures. The feasibility of transfer learning is demonstrated, as an approach to speed up implementation of automated fault detection systems when historical failure data is available. Variational autoencoders are proposed as a method for unsupervised dimensionality reduction and feature extraction, being useful for obtaining a health indicator with a statistical anomaly detection threshold. Data is collected from numerous experiments throughout the project. Most notably, a test was performed on a real offshore drilling machine with roller end wear in the bearing. To replicate this failure mode and aid development of condition monitoring methods, an axial bearing test rig has been designed and built as a part of the project. An overview of all experiments, methods and results are given in the thesis, with details covered in the appended papers.publishedVersio

    Cyclostationary error analysis and filter properties in a 3D wavelet coding framework

    Get PDF
    The reconstruction error due to quantization of wavelet subbands can be modeled as a cyclostationary process because of the linear periodically shift variant property of the inverse wavelet transform. For N-dimensional data, N-dimensional reconstruction error power cyclostationary patterns replicate on the data sample lattice. For audio and image coding applications this fact is of little practical interest since the decoded data is perceived in its wholeness, the error power oscillations on single data elements cannot be seen or heard and a global PSNR error measure is often used to represent the reconstruction quality. A different situation is the one of 3D data (static volumes or video sequences) coding, where decoded data are usually visualized by plane sections and the reconstruction error power is commonly measured by a PSNR[n] sequence, with n representing either a spatial slicing plane (for volumetric data) or the temporal reference frame (for video). In this case, the cyclostationary oscillations on single data elements lead to a global PSNR[n] oscillation and this effect may become a relevant concern. In this paper we study and describe the above phenomena and evaluate their relevance in concrete coding applications. Our analysis is entirely carried out in the original signal domain and can easily be extended to more than three dimensions. We associate the oscillation pattern with the wavelet filter properties in a polyphase framework and we show that a substantial reduction of the oscillation amplitudes can be achieved under a proper selection of the basis functions. Our quantitative model is initially made under high-resolution conditions and then qualitatively extended to all coding rates for the wide family of bit-plane quantization-based coding techniques. Finally, we experimentally validate the proposed models and we perform a subjective evaluation of the visual relevance of the PSNR[n] fluctuations in the cases of medical volumes and video coding

    Gear wear-monitoring using acoustic emission

    Full text link
    Acoustic emission (AE) signals have shown strong potential for gear wear monitoring, because of their capability of capturing high-frequency characteristics of tribological contacts. Gear AE signals are characterised by: i) short-time features coming from the complex surface micro-structure (asperities) and ii) slower cyclic features introduced by the gear kinematics. The combination of both properties has not been exploited yet, thus leaving a significant margin for the development of AE-based gear monitoring. This thesis hence aims at developing novel AE-based gear wear monitoring tools through the investigation of the statistical properties of gear AE as well as the physical relationships between signals and gear surface conditions. This research is organised in three steps to deliver the following objectives. Step 1 is to establish the relationship between AE signals and cyclic gear kinematics, modelled using AE cyclostationarity. Differently from the next steps, this approach purposely avoids an onerous physical model, and instead uses non-Gaussian statistics to represent the micro-structure effects on AE. Results show that the newly-developed cyclic AE features are highly correlated with wear severity. The physical modelling is tackled in step 2, which investigates the link between AE and micro-scale surface conditions, independently on gear kinematics. Two available physical models for dry contact are extended to lubricated sliding, and then tested on tribometer discs with different surface finishing. The pin-on-disc configuration avoids the complex gear kinematics, facilitating the direct study of surface effects under stable speed and load. The new physical model was able to reliably estimate roughness in a series of tests with different operating conditions. In the final step, the gear-kinematic effects modelled in step 1 are superimposed to the physical relationship between surface and signals observed in step 2 for a further investigation on the relationship between AE and gear wear. A set of experiments on degrading gears has proven that the proposed techniques are able to track gear wear along tooth profiles as it evolves in time. Furthermore, this study contributed to the understanding of the impact of surface characteristics on specific AE features, opening new avenues for further developments of AE-based gear wear monitoring

    Spectrum sensing for cognitive radio and radar systems

    Get PDF
    The use of the radio frequency spectrum is increasing at a rapid rate. Reliable and efficient operation in a crowded radio spectrum requires innovative solutions and techniques. Future wireless communication and radar systems should be aware of their surrounding radio environment in order to have the ability to adapt their operation to the effective situation. Spectrum sensing techniques such as detection, waveform recognition, and specific emitter identification are key sources of information for characterizing the surrounding radio environment and extracting valuable information, and consequently adjusting transceiver parameters for facilitating flexible, efficient, and reliable operation. In this thesis, spectrum sensing algorithms for cognitive radios and radar intercept receivers are proposed. Single-user and collaborative cyclostationarity-based detection algorithms are proposed: Multicycle detectors and robust nonparametric spatial sign cyclic correlation based fixed sample size and sequential detectors are proposed. Asymptotic distributions of the test statistics under the null hypothesis are established. A censoring scheme in which only informative test statistics are transmitted to the fusion center is proposed for collaborative detection. The proposed detectors and methods have the following benefits: employing cyclostationarity enables distinction among different systems, collaboration mitigates the effects of shadowing and multipath fading, using multiple strong cyclic frequencies improves the performance, robust detection provides reliable performance in heavy-tailed non-Gaussian noise, sequential detection reduces the average detection time, and censoring improves energy efficiency. In addition, a radar waveform recognition system for classifying common pulse compression waveforms is developed. The proposed supervised classification system classifies an intercepted radar pulse to one of eight different classes based on the pulse compression waveform: linear frequency modulation, Costas frequency codes, binary codes, as well as Frank, P1, P2, P3, and P4 polyphase codes. A robust M-estimation based method for radar emitter identification is proposed as well. A common modulation profile from a group of intercepted pulses is estimated and used for identifying the radar emitter. The M-estimation based approach provides robustness against preprocessing errors and deviations from the assumed noise model

    Efficient transfer entropy analysis of non-stationary neural time series

    Full text link
    Information theory allows us to investigate information processing in neural systems in terms of information transfer, storage and modification. Especially the measure of information transfer, transfer entropy, has seen a dramatic surge of interest in neuroscience. Estimating transfer entropy from two processes requires the observation of multiple realizations of these processes to estimate associated probability density functions. To obtain these observations, available estimators assume stationarity of processes to allow pooling of observations over time. This assumption however, is a major obstacle to the application of these estimators in neuroscience as observed processes are often non-stationary. As a solution, Gomez-Herrero and colleagues theoretically showed that the stationarity assumption may be avoided by estimating transfer entropy from an ensemble of realizations. Such an ensemble is often readily available in neuroscience experiments in the form of experimental trials. Thus, in this work we combine the ensemble method with a recently proposed transfer entropy estimator to make transfer entropy estimation applicable to non-stationary time series. We present an efficient implementation of the approach that deals with the increased computational demand of the ensemble method's practical application. In particular, we use a massively parallel implementation for a graphics processing unit to handle the computationally most heavy aspects of the ensemble method. We test the performance and robustness of our implementation on data from simulated stochastic processes and demonstrate the method's applicability to magnetoencephalographic data. While we mainly evaluate the proposed method for neuroscientific data, we expect it to be applicable in a variety of fields that are concerned with the analysis of information transfer in complex biological, social, and artificial systems.Comment: 27 pages, 7 figures, submitted to PLOS ON

    Applications of nonuniform sampling in wideband multichannel communication systems

    Get PDF
    This research is an investigation into utilising randomised sampling in communication systems to ease the sampling rate requirements of digitally processing narrowband signals residing within a wide range of overseen frequencies. By harnessing the aliasing suppression capabilities of such sampling schemes, it is shown that certain processing tasks, namely spectrum sensing, can be performed at significantly low sampling rates compared to those demanded by uniform-sampling-based digital signal processing. The latter imposes sampling frequencies of at least twice the monitored bandwidth regardless of the spectral activity within. Aliasing can otherwise result in irresolvable processing problems, as the spectral support of the present signal is a priori unknown. Lower sampling rates exploit the processing module(s) resources (such as power) more efficiently and avoid the possible need for premium specialised high-cost DSP, especially if the handled bandwidth is considerably wide. A number of randomised sampling schemes are examined and appropriate spectral analysis tools are used to furnish their salient features. The adopted periodogram-type estimators are tailored to each of the schemes and their statistical characteristics are assessed for stationary, and cyclostationary signals. Their ability to alleviate the bandwidth limitation of uniform sampling is demonstrated and the smeared-aliasing defect that accompanies randomised sampling is also quantified. In employing the aforementioned analysis tools a novel wideband spectrum sensing approach is introduced. It permits the simultaneous sensing of a number of nonoverlapping spectral subbands constituting a wide range of monitored frequencies. The operational sampling rates of the sensing procedure are not limited or dictated by the overseen bandwidth antithetical to uniform-sampling-based techniques. Prescriptive guidelines are developed to ensure that the proposed technique satisfies certain detection probabilities predefined by the user. These recommendations address the trade-off between the required sampling rate and the length of the signal observation window (sensing time) in a given scenario. Various aspects of the introduced multiband spectrum sensing approach are investigated and its applicability highlighted

    Enhanced Spectrum Sensing for Cognitive Cellular Systems

    Get PDF
    This dissertation aims at improving spectrum sensing algorithms in order to effectively apply them to cellular systems. In wireless communications, cellular systems occupy a significant part of the spectrum. The spectrum usage for cellular systems are rapidly expanding due to the increasing demand for wireless services in our society. This results in radio frequency spectrum scarcity. Cellular systems can effectively handle this issue through cognitive mechanisms for spectrum utilization. Spectrum sensing plays the first stage of cognitive cycles for the adaptation to radio environments. This dissertation focuses on maximizing the reliability of spectrum sensing to satisfy regulation requirements with respect to high spectrum sensing performance and an acceptable error rate. To overcome these challenges, characteristics of noise and manmade signals are exploited for spectrum sensing. Moreover, this dissertation considers system constraints, the compatibility with the current and the trends of future generations. Newly proposed and existing algorithms were evaluated in simulations in the context of cellular systems. Based on a prototype of cognitive cellular systems (CCSs), the proposed algorithms were assessed in realistic scenarios. These algorithms can be applied to CCSs for the awareness of desired signals in licensed and unlicensed bands. For orthogonal frequency-division multiplexing (OFDM) signals, this dissertation exploits the characteristics of pilot patterns and preambles for new algorithms. The new algorithms outperform the existing ones, which also utilize pilot patterns. Additionally, the new algorithms can work with short observation durations, which is not possible with the existing algorithms. The Digital Video Broadcasting - Terrestrial (DVB-T) standard is taken as an example application for the algorithms. The algorithms can also be developed for filter bank multicarrier (FBMC) signals, which are a potential candidate for multiplexing techniques in the next cellular generations. The experimental results give insights for the reliability of the algorithms, taking system constraints v into account. Another new sensing algorithm, based on a preamble, is proposed for the DVBT2 standard, which is the second generation of of DVB system. DVB-T2 systems have been deployed in worldwide regions. This algorithm can detect DVB-T2 signals in a very short observation interval, which is helpful for the in-band sensing mode, to protect primary users (in nearly real-time) from the secondary transmission. An enhanced spectrum sensing algorithm based on cyclostationary signatures is proposed to detect desired signals in very low signal-to-noise ratios (SNRs). This algorithm can be developed to detect the single-carrier frequency division multiple access (SC-FDMA) signal, which is adopted for the uplink of long-term evolution (LTE) systems. This detector substantially outperforms the existing detection algorithms with the marginal complexity of some scalar multiplications. The test statistics are explicitly formulated in mathematical formulas, which were not presented in the previous work. The formulas and simulation results provide a useful strategy for cyclostationarity-based detection with different modulation types. For multiband spectrum sensing, an effective scheme is proposed not only to detect but also to classify LTE signals in multiple channels in a wide frequency range. To the best of our knowledge, no scheme had previously been described to perform the sensing tasks. The scheme is reliable and flexible for implementation, and there is almost no performance degradation caused by the scheme compared to single-channel spectrum sensing. The multiband sensing scheme was experimentally assessed in scenarios where the existing infrastructures are interrupted to provide mobile communications. The proposed algorithms and scheme facilitate cognitive capabilities to be applied to real cellular communications. This enables the significantly improved spectrum utilization of CCSs

    Vibration-based Fault Diagnostics in Wind Turbine Gearboxes Using Machine Learning

    Get PDF
    A significantly increased production of wind energy offers a path to achieve the goals of green energy policies in the United States and other countries. However, failures in wind turbines and specifically their gearboxes are higher due to their operation in unpredictable wind conditions that result in downtime and losses. Early detection of faults in wind turbines will greatly increase their reliability and commercial feasibility. Recently, data-driven fault diagnosis techniques based on deep learning have gained significant attention due to their powerful feature learning capabilities. Nonetheless, diagnosing faults in wind turbines operating under varying conditions poses a major challenge. Signal components unrelated to faults and high levels of noise obscure the signature generated by early-stage damage. To address this issue, we propose an innovative fault diagnosis framework that utilizes deep learning and leverages cyclostationary analysis of sensor data. By generating cyclic spectral coherence maps from the sensor data, we can emphasize fault-related signatures. These 2D color map representations are then used to train convolutional neural networks capable of detecting even minor faults and early-stage damages. The proposed method is evaluated using test data obtained from multibody dynamic simulations conducted under various operating conditions. The benchmark test cases, inspired by an NREL study, are successfully detected using our approach. To further enhance the accuracy of the model, subsequent studies employ Convolutional Neural Networks with Local Interpretable Model-Agnostic Explanations (LIME). This approach aids in interpreting classifier predictions and developing an interpretable classifier by focusing on a subset range of cyclic spectral coherence maps that carry the unique fault signatures. This improvement contributes to better accuracy, especially in scenarios involving multiple faults in the gearbox that need to be identified. Moreover, to address the challenge of applying this framework in practical settings, where standard deep learning techniques tend to provide inaccurate predictions for unseen faults or unusual operating conditions, we investigate fault diagnostics using a Bayesian convolutional neural network. This approach incorporates uncertainty bounds into prediction results, reducing overconfident misclassifications. The results demonstrate the effectiveness of the Bayesian approach in fault diagnosis, offering valuable implications for condition monitoring in other rotating machinery applications
    • …
    corecore