163 research outputs found

    Daydreaming factories

    Get PDF
    Optimisation of factories, a cornerstone of production engineering for the past half century, relies on formulating the challenges with limited degrees of freedom. In this paper, technological advances are reviewed to propose a “daydreaming” framework for factories that use their cognitive capacity for looking into the future or “foresighting”. Assessing and learning from the possible eventualities enable breakthroughs with many degrees of freedom and make daydreaming factories antifragile. In these factories with augmented and reciprocal learning and foresighting processes, revolutionary reactions to external and internal stimuli are unnecessary and industrial co-evolution of people, processes and products will replace industrial revolutions

    MERGING SUBJECT MATTER EXPERTISE AND DEEP CONVOLUTIONAL NEURALNETWORK FOR STATE-BASED ONLINE MACHINE-PART INTERACTIONCLASSIFICATION

    Full text link
    Machine-part interaction classification is a key capability required by Cyber-Physical Systems (CPS), a pivotal enabler of Smart Manufacturing (SM). While previous relevant studies on the subject have primarily focused on time series classification, change point detection is equally important because it provides temporal information on changes in behavior of the machine. In this work, we address point detection and time series classification for machine-part interactions with a deep Convolutional Neural Network (CNN) based framework. The CNN in this framework utilizes a two-stage encoder-classifier structure for efficient feature representation and convenient deployment customization for CPS. Though data-driven, the design and optimization of the framework are Subject Matter Expertise (SME) guided. An SME defined Finite State Machine (FSM) is incorporated into the framework to prohibit intermittent misclassifications. In the case study, we implement the framework to perform machine-part interaction classification on a milling machine, and the performance is evaluated using a testing dataset and deployment simulations. The implementation achieved an average F1-Score of 0.946 across classes on the testing dataset and an average delay of 0.24 seconds on the deployment simulations.http://deepblue.lib.umich.edu/bitstream/2027.42/169573/1/honors_capstone_report_hao_wang.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/169573/2/capstone_ppt_hao_wang.ppt

    Adversarial vs behavioural-based defensive AI with joint, continual and active learning: automated evaluation of robustness to deception, poisoning and concept drift

    Get PDF
    International audienceRecent advancements in Artificial Intelligence (AI) have brought new capabilities to behavioural analysis (UEBA) for cyber-security consisting in the detection of hostile action based on the unusual nature of events observed on the Information System.In our previous work (presented at C&ESAR 2018 and FIC 2019), we have associated deep neural networks auto-encoders for anomaly detection and graph-based events correlation to address major limitations in UEBA systems. This resulted in reduced false positive and false negative rates, improved alert explainability, while maintaining real-time performances and scalability. However, we did not address the natural evolution of behaviours through time, also known as concept drift. To maintain effective detection capabilities, an anomaly-based detection system must be continually trained, which opens a door to an adversary that can conduct the so-called “frog-boiling” attack by progressively distilling unnoticed attack traces inside the behavioural models until the complete attack is considered normal. In this paper, we present a solution to effectively mitigate this attack by improving the detection process and efficiently leveraging human expertise. We also present preliminary work on adversarial AI conducting deception attack, which, in term, will be used to help assess and improve the defense system. These defensive and offensive AI implement joint, continual and active learning, in a step that is necessary in assessing, validating and certifying AI-based defensive solutions
    • …
    corecore