4,950 research outputs found

    Advancing a Design for Trusted Community Bathymetry

    Get PDF
    The design for a Trusted Community Bathymetry (TCB) system, presented in Calder et al., 2020, demonstrates a data collection system capable of collecting precisely geo-referenced depth soundings from any navigational echosounder installed on a volunteer vessel. The TCB system is capable of autonomously determining any vertical installation offset with respect to the waterline, and provides sufficient guarantees of data quality to allow the soundings to be considered for hydrographic use. This thesis presents two contributions to advance the original TCB system design. First, it capitalizes on the widespread availability of low-cost sidescan modules in the recreational sonar market by describing a method to integrate one of these units with the existing TCB datalogger. This integration adds significant richness to a volunteer dataset by enabling a hydrographic office to benefit from imagery of targets and obstructions in the vicinity of TCB vessels. Additionally, a method for autonomous operation is presented in which the TCB datalogger may command the sidescan to automatically log imagery in the vicinity of targets of interest specified by the hydrographic office. Second, this work demonstrates it is possible to replace the survey-grade GNSS receiver antenna used in the original system design with a comparatively inexpensive unit. The replacement antenna does not provide equivalent real-time performance but can collect observations which can be post-processed to produce solutions with uncertainties on the same order as the survey-grade antenna. Since real-time performance is not important in a TCB application, this development represents a significant reduction in total system cost and increases the viability of widespread deployment without sacrificing data quality

    Spatial Data Performance Test of Mid-cost UAS with Direct Georeferencing

    Get PDF
    Recent development of lightweight and small size multi-frequency GNSS receivers allows determination of the precise position of the moving platform and spatial data acquisition without the need for setting up and measuring of ground control points. The main advantage of this approach is a higher operational capacity with reduced time and cost of field measurement. This relates to fieldwork in inaccessible areas with demanding terrain configuration. In this paper development and use of a UAS with direct georeferencing of camera sensor for spatial data acquisition is described, and the possibility of 3D scene reconstruction based on the precise position of the camera with predetermined interior parameters is examined. Modern computer vision-based SfM photogrammetry algorithms are used for determining attitude parameters and reconstruction of the scene. For that purpose, several tests on two different test fields were performed using various system parameters for collecting and analysis of several spatial data sets. The presented results demonstrate a satisfactory accuracy (3.1 cm planar and 6.4 cm spatial) of the system for various applications in geodesy

    USING UNMANNED AERIAL SYSTEMS (UAS) AND PHOTOGRAMMETRY TO REMOTELY ASSESS LANDSLIDE EVENTS IN NEAR REAL-TIME

    Get PDF
    Commercially available unmanned aerial systems (UAS) and photogrammetry software have undergone rapid advancements in recent years. However, the use of UAS and photogrammetry techniques for monitoring surface landform deformation has not been adopted for the most part due to complicated workflows and complex UAS systems. This study demonstrates the ability to monitor landslides in near-real time with commercially available UAS and photogrammetry software using direct georeferencing and co- registration techniques. The results of this research were then assessed to develop an optimal workflow for the rapid assessment of surface deformations with direct georeferenced UAS obtained imagery and photogrammetry software

    Wearable inertial sensor system towards daily human kinematic gait analysis: benchmarking analysis to MVN BIOMECH

    Get PDF
    This paper presents a cost- and time-effective wearable inertial sensor system, the InertialLAB. It includes gyroscopes and accelerometers for the real-time monitoring of 3D-angular velocity and 3D-acceleration of up to six lower limbs and trunk segment and sagittal joint angle up to six joints. InertialLAB followed an open architecture with a low computational load to be executed by wearable processing units up to 200 Hz for fostering kinematic gait data to third-party systems, advancing similar commercial systems. For joint angle estimation, we developed a trigonometric method based on the segments’ orientation previously computed by fusion-based methods. The validation covered healthy gait patterns in varying speed and terrain (flat, ramp, and stairs) and including turns, extending the experiments approached in the literature. The benchmarking analysis to MVN BIOMECH reported that InertialLAB provides more reliable measures in stairs than in flat terrain and ramp. The joint angle time-series of InertialLAB showed good waveform similarity (>0.898) with MVN BIOMECH, resulting in high reliability and excellent validity. User-independent neural network regression models successfully minimized the drift errors observed in InertialLAB’s joint angles (NRMSE < 0.092). Further, users ranked InertialLAB as good in terms of usability. InertialLAB shows promise for daily kinematic gait analysis and real-time kinematic feedback for wearable third-party systems.This work has been supported in part by the Fundação para a Ciência e Tecnologia (FCT) with the Reference Scholarship under Grant SFRH/BD/108309/2015 and SFRH/BD/147878/2019, by the FEDER Funds through the Programa Operacional Regional do Norte and national funds from FCT with the project SmartOs under Grant NORTE-01-0145-FEDER-030386, and through the COMPETE 2020—Programa Operacional Competitividade e Internacionalização (POCI)—with the Reference Project under Grant POCI-01-0145-FEDER-006941

    Space life sciences: A status report

    Get PDF
    The scientific research and supporting technology development conducted in the Space Life Sciences Program is described. Accomplishments of the past year are highlighted. Plans for future activities are outlined. Some specific areas of study include the following: Crew health and safety; What happens to humans in space; Gravity, life, and space; Sustenance in space; Life and planet Earth; Life in the Universe; Promoting good science and good will; Building a future for the space life sciences; and Benefits of space life sciences research

    Doctor of Philosophy

    Get PDF
    dissertationLow-cost wireless embedded systems can make radio channel measurements for the purposes of radio localization, synchronization, and breathing monitoring. Most of those systems measure the radio channel via the received signal strength indicator (RSSI), which is widely available on inexpensive radio transceivers. However, the use of standard RSSI imposes multiple limitations on the accuracy and reliability of such systems; moreover, higher accuracy is only accessible with very high-cost systems, both in bandwidth and device costs. On the other hand, wireless devices also rely on synchronized notion of time to coordinate tasks (transmit, receive, sleep, etc.), especially in time-based localization systems. Existing solutions use multiple message exchanges to estimate time offset and clock skew, which further increases channel utilization. In this dissertation, the design of the systems that use RSSI for device-free localization, device-based localization, and breathing monitoring applications are evaluated. Next, the design and evaluation of novel wireless embedded systems are introduced to enable more fine-grained radio signal measurements to the application. I design and study the effect of increasing the resolution of RSSI beyond the typical 1 dB step size, which is the current standard, with a couple of example applications: breathing monitoring and gesture recognition. Lastly, the Stitch architecture is then proposed to allow the frequency and time synchronization of multiple nodes' clocks. The prototype platform, Chronos, implements radio frequency synchronization (RFS), which accesses complex baseband samples from a low-power low-cost narrowband radio, estimates the carrier frequency offset, and iteratively drives the difference between two nodes' main local oscillators (LO) to less than 3 parts per billion (ppb). An optimized time synchronization and ranging protocols (EffToF) is designed and implemented to achieve the same timing accuracy as the state-of-the-art but with 59% less utilization of the UWB channel. Based on this dissertation, I could foresee Stitch and RFS further improving the robustness of communications infrastructure to GPS jamming, allow exploration of applications such as distributed beamforming and MIMO, and enable new highly-synchronous wireless sensing and actuation systems

    Adaptive smartphone-based sensor fusion for estimating competitive rowing kinematic metrics.

    Get PDF
    Competitive rowing highly values boat position and velocity data for real-time feedback during training, racing and post-training analysis. The ubiquity of smartphones with embedded position (GPS) and motion (accelerometer) sensors motivates their possible use in these tasks. In this paper, we investigate the use of two real-time digital filters to achieve highly accurate yet reasonably priced measurements of boat speed and distance traveled. Both filters combine acceleration and location data to estimate boat distance and speed; the first using a complementary frequency response-based filter technique, the second with a Kalman filter formalism that includes adaptive, real-time estimates of effective accelerometer bias. The estimates of distance and speed from both filters were validated and compared with accurate reference data from a differential GPS system with better than 1 cm precision and a 5 Hz update rate, in experiments using two subjects (an experienced club-level rower and an elite rower) in two different boats on a 300 m course. Compared with single channel (smartphone GPS only) measures of distance and speed, the complementary filter improved the accuracy and precision of boat speed, boat distance traveled, and distance per stroke by 44%, 42%, and 73%, respectively, while the Kalman filter improved the accuracy and precision of boat speed, boat distance traveled, and distance per stroke by 48%, 22%, and 82%, respectively. Both filters demonstrate promise as general purpose methods to substantially improve estimates of important rowing performance metrics

    A feasibility study: California Department of Forestry and Fire Protection utilization of infrared technologies for wildland fire suppression and management

    Get PDF
    NASA's JPL has completed a feasibility study using infrared technologies for wildland fire suppression and management. The study surveyed user needs, examined available technologies, matched the user needs with technologies, and defined an integrated infrared wildland fire mapping concept system configuration. System component trade-offs were presented for evaluation in the concept system configuration. The economic benefits of using infrared technologies in fire suppression and management were examined. Follow-on concept system configuration development and implementation were proposed

    Military Application of Aerial Photogrammetry Mapping Assisted by Small Unmanned Air Vehicles

    Get PDF
    This research investigated the practical military applications of the photogrammetric methods using remote sensing assisted by small unmanned aerial vehicles (SUAVs). The research explored the feasibility of UAV aerial mapping in terms of the specific military purposes, focusing on the geolocational and measurement accuracy of the digital models, and image processing time. The research method involved experimental flight tests using low-cost Commercial off-the-shelf (COTS) components, sensors and image processing tools to study key features of the method required in military like location accuracy, time estimation, and measurement capability. Based on the results of the data analysis, two military applications are defined to justify the feasibility and utility of the methods. The first application is to assess the damage of an attacked military airfield using photogrammetric digital models. Using a hex-rotor test platform with Sony A6000 camera, georeferenced maps with 1 meter accuracy was produced and with sufficient resolution (about 1 cm/pixel) to identify foreign objects on the runway. The other case examines the utility and quality of the targeting system using geo-spatial data from reconstructed 3-Dimensional (3-D) photogrammetry models. By analyzing 3-D model, operable targeting under 1meter accuracy with only 5 percent error on distance, area, and volume wer
    corecore