8,793 research outputs found

    A Current-Source Sinusoidal Gate Driver for High-Frequency Applications

    Get PDF

    A power-saving modulation technique for time-of-flight range imaging sensors

    Get PDF
    Time-of-flight range imaging cameras measure distance and intensity simultaneously for every pixel in an image. With the continued advancement of the technology, a wide variety of new depth sensing applications are emerging; however a number of these potential applications have stringent electrical power constraints that are difficult to meet with the current state-of-the-art systems. Sensor gain modulation contributes a significant proportion of the total image sensor power consumption, and as higher spatial resolution range image sensors operating at higher modulation frequencies (to achieve better measurement precision) are developed, this proportion is likely to increase. The authors have developed a new sensor modulation technique using resonant circuit concepts that is more power efficient than the standard mode of operation. With a proof of principle system, a 93–96% reduction in modulation drive power was demonstrated across a range of modulation frequencies from 1–11 MHz. Finally, an evaluation of the range imaging performance revealed an improvement in measurement linearity in the resonant configuration due primarily to the more sinusoidal shape of the resonant electrical waveforms, while the average precision values were comparable between the standard and resonant operating modes

    Direct usage of photovoltaic solar panels to supply a freezer motor with variable DC input voltage

    Get PDF
    In this paper, a single-phase photovoltaic (PV) inverter fed by a boost converter to supply a freezer motor with variable DC input is investigated. The proposed circuit has two stages. Firstly, the DC output of the PV panel that varies between 150 and 300 V will be applied to the boost converter. The boost converter will boost the input voltage to a fixed 300 V DC. Next, this voltage is supplied to the single-phase full-bridge inverter to obtain 230 V AC. In the end, The output of the inverter will feed a freezer motor. The PV panels can be stand-alone or grid-connected. The grid-connected PV is divided into two categories, such as with a transformer and without a transformer, a transformer type has galvanic isolation resulting in increasing the security and also provides no further DC current toward the grid, but it is expensive, heavy and bulky. The transformerless type holds high efficiency and it is cheaper, but it suffers from leakage current between PV and the grid. This paper proposes a stand-alone direct use of PV to supply a freezer; therefore, no grid connection will result in no leakage current between the PV and Grid. The proposed circuit has some features such as no filtering circuit at the output of the inverter, no battery in the system, DC-link instead of AC link that reduces no-loads, having a higher efficiency, and holding enough energy in the DC-link capacitor to get the motor started. The circuit uses no transformers, thus, it is cheaper and has a smaller size. In addition, the system does not require a complex pulse width modulation (PWM) technique, because the motor can operate with a pulsed waveform. The control strategy uses the PWM signal with the desired timing. With this type of square wave, the harmonics (5th and 7th) of the voltage are reduced. The experimental and simulation results are presented to verify the feasibility of the proposed strategy

    Characterizing an image intensifier in an full-field range image system

    Get PDF
    We are developing a high precision full-field range imaging system. An integral component in this system is an image intensifier, which is modulated at frequencies up to 100 MHz. The range measurement precision is dictated by the image intensifier performance, in particular, the achievable modulation frequency, modulation depth, and waveform shape. By characterizing the image intensifier response, undesirable effects can be observed and quantified with regards to the consequence on the resulting range measurements, and the optimal operating conditions can be selected to minimize these disturbances. The characterization process utilizes a pulsed laser source to temporally probe the gain of the image intensifier. The laser is pulsed at a repetition rate slightly different to the image intensifier modulation frequency, producing a continuous phase shift between the two signals. A charge coupled device samples the image intensifier output, capturing the response over a complete modulation period. Deficiencies in our measured response are clearly identifiable and simple modifications to the configuration of our electrical driver circuit improve the modulation performance

    Characterizing an image intensifier in an full-field range image system

    Get PDF
    We are developing a high precision full-field range imaging system. An integral component in this system is an image intensifier, which is modulated at frequencies up to 100 MHz. The range measurement precision is dictated by the image intensifier performance, in particular, the achievable modulation frequency, modulation depth, and waveform shape. By characterizing the image intensifier response, undesirable effects can be observed and quantified with regards to the consequence on the resulting range measurements, and the optimal operating conditions can be selected to minimize these disturbances. The characterization process utilizes a pulsed laser source to temporally probe the gain of the image intensifier. The laser is pulsed at a repetition rate slightly different to the image intensifier modulation frequency, producing a continuous phase shift between the two signals. A charge coupled device samples the image intensifier output, capturing the response over a complete modulation period. Deficiencies in our measured response are clearly identifiable and simple modifications to the configuration of our electrical driver circuit improve the modulation performance

    A magnetically isolated gate driver for high-speed voltage sharing in series-connected MOSFETs

    Get PDF
    A scalable resonant gate drive circuit is described, suitable for driving series-connected MOSFETs in high-voltage, high-speed inverter applications for resistive and capacitive loads. Galvanic isolation is provided by a loop of high voltage wire, which also serves as the resonant inductor in the circuit. Fast dynamic voltage sharing is achieved by delivering equal current to each gate. A prototype is built and tested, demonstrating a 75ns switching time at 5kV using 900V MOSFETs

    A Current-Dependent Switching Strategy for Si/SiC Hybrid Switch-Based Power Converters

    Get PDF
    Abstract: Hybrid switches configured by paralleling Silicon (Si) Insulated Gate Bipolar Transistors (IGBT) and Silicon Carbide (SiC) Metal-Oxide Semiconductor Field-Effect Transistors (MOSFET) have been verified to be a high-efficiency cost-effective device concept. In this paper, a current-dependent switching strategy is introduced and implemented to further improve the performance of Si/SiC hybrid switches. This proposed switching strategy is based on a comprehensive consideration of reducing device losses, reliable operation, and overload capability. Based on the utilization of such Si/SiC hybrid switches and the proposed switching strategy, a 15-kW single-phase H-bridge inverter prototype was implemented and tested in the laboratory. Simulation and experimental results are given to verify the performance of the hybrid switches and the new switching strategy

    Image intensifier characterization

    Get PDF
    An image intensifier forms an integral part of a full-field image range finder under development at the University of Waikato. Operating as a high speed shutter with repetition rates up to 100 MHz, a method is described to characterise the response, both temporally and spatially, of the intensifier in order to correct for variations in the field of view and to optimise the operating conditions. A short pulse of visible light is emitted by a laser diode, uniformly illuminating the image intensifier, while a CCD camera captures the output from the intensifier. The phase of the laser pulse is continuously varied using a heterodyne configuration, automatically producing a set of samples covering the modulation cycle. The results show some anomalies in the response of our system and some simple solutions are proposed to correct for these

    A Single-Stage LED Driver Based on ZCDS Class-E Current-Driven Rectifier as a PFC for Street-Lighting Applications

    Get PDF
    This paper presents a light-emitting diode (LED) driver for street-lighting applications that uses a resonant rectifier as a power-factor corrector (PFC). The PFC semistage is based on a zero-current and zero-derivative-switching (ZCDS) Class-E current-driven rectifier, and the LED driver semistage is based on a zero-voltage-switching (ZVS) Class-D LLC resonant converter that is integrated into a single-stage topology. To increase the conduction angle of the bridge-rectifier diodes current and to decrease the current harmonics that are injected in the utility line, the ZCDS Class-E rectifier is placed between the bridge-rectifier and a dc-link capacitor. The ZCDS Class-E rectifieris driven by a high-frequency current source, which is obtained from a square-wave output voltage of the ZVS Class-D LLC resonant converter using a matching network. Additionally, the proposed converter has a soft-switching characteristic that reduces switching losses and switching noise. A prototype for a 150-W LED street light has been developed and tested to evaluate the performance of the proposed approach. The proposed LED driver had a high efficiency (>91%), a high PF (>0.99), and a low total harmonic distortion (THD i <; 8%) under variation of the utility-line input voltage from 180 to 250 V rms . These experimental results demonstrate the feasibility of the proposed LED scheme

    Design Of A Microcontroller-Based Converter For 3-Phase Brushless DC Motor Drives

    Get PDF
    Dalam aplikasi industri dan peralatan perubatan, dapat dilihat kepentingan pengawalan peralatan atau mesin dengan memantau proses keluaran dan kawalan masukan daripada komputer. In industrial application and medical devices, it can be seen that there is a need of controlling the devices or machines with observation of the output process and input control from a computer
    corecore