131 research outputs found

    A 10-b Fourth-Order Quadrature Bandpass Continuous-Time ΣΔ Modulator With 33-MHz Bandwidth for a Dual-Channel GNSS Receiver

    Get PDF
    This document is the Accepted Manuscript version of the following article: Junfeng Zhang, Yang Xu, Zehong Zhang, Yichuang Sun, Zhihua Wang, and Baoyong Chi, ‘A 10-b Fourth-Order Quadrature Bandpass Continuous-Time ΣΔ Modulator With 33-MHz Bandwidth for a Dual-Channel GNSS Receiver’, IEEE Transactions on Microwave Theory and Practice, Vol. 65 (4): 1303-1314, first published online 16 February 2017. The version of record is available online at DOI: 10.1109/TMTT.2017.266237, Published by IEEE. © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.A fourth-order quadrature bandpass continuous-time sigma-delta modulator for a dual-channel global navigation satellite system (GNSS) receiver is presented. With a bandwidth (BW) of 33 MHz, the modulator is able to digitalize the downconverted GNSS signals in two adjacent signal bands simultaneously, realizing dual-channel GNSS reception with one receiver channel instead of two independent receiver channels. To maintain the loop-stability of the high-order architecture, any extra loop phase shifting should be minimized. In the system architecture, a feedback and feedforward hybrid architecture is used to implement the fourth-order loop-filter, and a return-to-zero (RZ) feedback after the discrete-time differential operation is introduced into the input of the final integrator to realize the excess loop delay compensation, saving a spare summing amplifier. In the circuit implementation, power-efficient amplifiers with high-frequency active feedforward and antipole-splitting techniques are employed in the active RC integrators, and self-calibrated comparators are used to implement the low-power 3-b quantizers. These power saving techniques help achieve superior figure of merit for the presented modulator. With a sampling rate of 460 MHz, current-steering digital-analog converters are chosen to guarantee high conversion speed. Implemented in only 180-nm CMOS, the modulator achieves 62.1-dB peak signal to noise and distortion ratio, 64-dB dynamic range, and 59.3-dB image rejection ratio, with a BW of 33 MHz, and consumes 54.4 mW from a 1.8 V power supply.Peer reviewe

    Receiver Front-Ends in CMOS with Ultra-Low Power Consumption

    Get PDF
    Historically, research on radio communication has focused on improving range and data rate. In the last decade, however, there has been an increasing demand for low power and low cost radios that can provide connectivity with small devices around us. They should be able to offer basic connectivity with a power consumption low enough to function extended periods of time on a single battery charge, or even energy scavenged from the surroundings. This work is focused on the design of ultra-low power receiver front-ends intended for a receiver operating in the 2.4GHz ISM band, having an active power consumption of 1mW and chip area of 1mm². Low power consumption and small size make it hard to achieve good sensitivity and tolerance to interference. This thesis starts with an introduction to the overall receiver specifications, low power radio and radio standards, front-end and LO generation architectures and building blocks, followed by the four included papers. Paper I demonstrates an inductorless front-end operating at 915MHz, including a frequency divider for quadrature LO generation. An LO generator operating at 2.4GHz is shown in Paper II, enabling a front-end operating above 2GHz. Papers III and IV contain circuits with combined front-end and LO generator operating at or above the full 2.45GHz target frequency. They use VCO and frequency divider topologies that offer efficient operation and low quadrature error. An efficient passive-mixer design with improved suppression of interference, enables an LNA-less design in Paper IV capable of operating without a SAW-filter

    Low-power CMOS front-ends for wireless personal area networks

    Get PDF
    The potential of implementing subthreshold radio frequency circuits in deep sub-micron CMOS technology was investigated for developing low-power front-ends for wireless personal area network (WPAN) applications. It was found that the higher transconductance to bias current ratio in weak inversion could be exploited in developing low-power wireless front-ends, if circuit techniques are employed to mitigate the higher device noise in subthreshold region. The first fully integrated subthreshold low noise amplifier was demonstrated in the GHz frequency range requiring only 260 μW of power consumption. Novel subthreshold variable gain stages and down-conversion mixers were developed. A 2.4 GHz receiver, consuming 540 μW of power, was implemented using a new subthreshold mixer by replacing the conventional active low noise amplifier by a series-resonant passive network that provides both input matching and voltage amplification. The first fully monolithic subthreshold CMOS receiver was also implemented with integrated subthreshold quadrature LO (Local Oscillator) chain for 2.4 GHz WPAN applications. Subthreshold operation, passive voltage amplification, and various low-power circuit techniques such as current reuse, stacking, and differential cross coupling were combined to lower the total power consumption to 2.6 mW. Extremely compact resistive feedback CMOS low noise amplifiers were presented as a cost-effective alternative to narrow band LNAs using high-Q inductors. Techniques to improve linearity and reduce power consumption were presented. The combination of high linearity, low noise figure, high broadband gain, extremely small die area and low power consumption made the proposed LNA architecture a compelling choice for many wireless applications.Ph.D.Committee Chair: Laskar, Joy; Committee Member: Chakraborty, Sudipto; Committee Member: Chang, Jae Joon; Committee Member: Divan, Deepakraj; Committee Member: Kornegay, Kevin; Committee Member: Tentzeris, Emmanoui

    Millimeter-scale RF Integrated Circuits and Antennas for Energy-efficient Wireless Sensor Nodes

    Full text link
    Recently there has been increased demand for a millimeter-scale wireless sensor node for applications such as biomedical devices, defense, and surveillance. This form-factor is driven by a desire to be vanishingly small, injectable through a needle, or implantable through a minimally-invasive surgical procedure. Wireless communication is a necessity, but there are several challenges at the millimeter-scale wireless sensor node. One of the main challenges is external components like crystal reference and antenna become the bottleneck of realizing the mm-scale wireless sensor node device. A second challenge is power consumption of the electronics. At mm-scale, the micro-battery has limited capacity and small peak current. Moreover, the RF front-end circuits that operates at the highest frequency in the system will consume most of the power from the battery. Finally, as node volume reduces, there is a challenge of integrating the entire system together, in particular for the RF performance, because all components, including the battery and ICs, need to be placed in close proximity of the antenna. This research explores ways to implement low-power integrated circuits in an energy-constrained and volume constrained application. Three different prototypes are mainly conducted in the proposal. The first is a fully-encapsulated, autonomous, complete wireless sensor node with UWB transmitter in 10.6mm3 volume. It is the first time to demonstrate a full and stand-alone wireless sensing functionality with such a tiny integrated system. The second prototype is a low power GPS front-end receiver that supports burst-mode. A double super-heterodyne topology enables the reception of the three public GPS bands, L1, L2 and L5 simultaneously. The third prototype is an integrated rectangular slot loop antenna in a standard 0.13-μm BiCMOS technology. The antenna is efficiently designed to cover the bandwidth at 60 GHz band and easily satisfy the metal density rules and can be integrated with other circuitry in a standard process.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/143972/1/hskims_1.pd

    A robust 2.4 GHz time-of-arrival based ranging system with sub-meter accuracy: feasibility study and realization of low power CMOS receiver

    Get PDF
    Draadloze sensornetwerken worden meer en meer aangewend om verschillende soorten informatie te verzamelen. De locatie, waar deze informatie verzameld is, is een belangerijke eigenschap en voor sommige toepassingen, zoals het volgen van personen of goederen, zelfs de meest belangrijke en mogelijkmakende factor. Om de positie van een sensor te bepalen, is een technologie nodig die de afstand tot een gekend referentiepunt schat. Door verschillende afstandsmetingen te combineren, is het mogelijk de absolute locatie van de node te berekenen

    Techniques for Frequency Synthesizer-Based Transmitters.

    Full text link
    Internet of Things (IoT) devices are poised to be the largest market for the semiconductor industry. At the heart of a wireless IoT module is the radio and integral to any radio is the transmitter. Transmitters with low power consumption and small area are crucial to the ubiquity of IoT devices. The fairly simple modulation schemes used in IoT systems makes frequency synthesizer-based (also known as PLL-based) transmitters an ideal candidate for these devices. Because of the reduced number of analog blocks and the simple architecture, PLL-based transmitters lend themselves nicely to the highly integrated, low voltage nanometer digital CMOS processes of today. This thesis outlines techniques that not only reduce the power consumption and area, but also significantly improve the performance of PLL-based transmitters.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113385/1/mammad_1.pd

    CMOS ASIC Design of Multi-frequency Multi-constellation GNSS Front-ends

    Get PDF
    With the emergence of the new global navigation satellite systems (GNSSs) such as Galileo, COMPASS and GLONASS, the US Global Positioning System (GPS) has new competitors. This multiplicity of constellations will offer new services and a much better satellite coverage. Public regulated service (PRS) is one of these new services that Galileo, the first global positioning service under civilian control, will offers. The PRS is a proprietary encrypted navigation designed to be more reliable and robust against jamming and provides premium quality in terms of position and timing and continuity of service, but it requires the use of FEs with extended capabilities. The project that this thesis starts from, aims to develop a dual frequency (E1 and E6) PRS receiver with a focus on a solution for professional applications that combines affordability and robustness. To limit the production cost, the choice of a monolithic design in a multi-purpose 0.18 µm complementary metal-oxide-semiconductor (CMOS) technology have been selected, and to reduce the susceptibility to interference, the targeted receiver is composed of two independent FEs. The first ASIC described here is such FEs bundle. Each FE is composed of a radio frequency (RF) chain that includes a low-noise amplifier (LNA), a quadrature mixer, a frequency synthesizer (FS), two intermediate frequency (IF) filters, two variable-gain amplifiers (VGAs) and two 6-bit flash analog-to-digital converters (ADCs). Each have an IF bandwidth of 50 MHz to accommodate the wide-band PRS signals. The FE achieves a 30 dB of dynamic gain control at each channel. The complete receivers occupies a die area of 11.5 mm2 while consuming 115 mW from a supply of a 1.8 V. The second ASIC that targets civilian applications, is a reconfigurable single-channel FE that permits to exploit the interoperability among GNSSs. The FE can operate in two modes: a ¿narrow-band mode¿, dedicated to Beidou-B1 with an IF bandwidth of 8 MHz, and a ¿wide-band mode¿ with an IF bandwidth of 23 MHz, which can accommodate simultaneous reception of Beidou-B1/GPS-L1/Galileo-E1. These two modes consumes respectively 22.85 mA and 28.45 mA from a 1.8 V supply. Developed with the best linearity in mind, the FE shows very good linearity with an input-referred 1 dB compression point (IP1dB) of better than -27.6 dBm. The FE gain is stepwise flexible from 39 dB and to a maximum of 58 dB. The complete FE occupies a die area of only 2.6 mm2 in a 0.18 µm CMOS. To also accommodate the wide-band PRS signals in the IF section of the FE, a highly selective wide-tuning-range 4th-order Gm-C elliptic low-pass filter is used. It features an innovative continuous tuning circuit that adjusts the bias current of the Gm cell¿s input stage to control the cutoff frequency. With this circuit, the power consumption is proportional to the cutoff frequency thus the power efficiency is achieved while keeping the linearity near constant. Thanks to a Gm switching technique, which permit to keep the signal path switchless, the filter shows an extended tuning of the cutoff frequency that covers continuously a range from 7.4 MHz to 27.4 MHz. Moreover the abrupt roll-off of up to 66 dB/octave, can mitigate out-of-band interference. The filter consumes 2.1 mA and 7.5 mA at its lowest and highest cutoff frequencies respectively, and its active area occupies, 0.23 mm2. It achieves a high input-referred third-order intercept point (IIP3) of up to -1.3 dBVRMS

    CMOS radio frequency circuits for short-range direct-conversion receivers

    Get PDF
    The research described in this thesis is focused on the design and implementation of radio frequency (RF) circuits for direct-conversion receivers. The main interest is in RF front-end circuits, which contain low-noise amplifiers, downconversion mixers, and quadrature local oscillator signal generation circuits. Three RF front-end circuits were fabricated in a short-channel CMOS process and experimental results are presented. A low-noise amplifier (LNA) is typically the first amplifying block in the receiver. A large number of LNAs have been reported in the literature. In this thesis, wideband LNA structures are of particular interest. The most common and relevant LNA topologies are analyzed in detail in the frequency domain and theoretical limitations are found. New LNA structures are presented and a comparison to the ones found in the literature is made. In this work, LNAs are implemented with downconversion mixers as RF front-ends. The designed mixers are based on the commonly used Gilbert cell. Different mixer implementation alternatives are presented and the design of the interface between the LNA and the downconversion mixer is discussed. In this work, the quadrature local oscillator signal is generated either by using frequency dividers or polyphase filters (PPF). Different possibilities for implementing frequency dividers are briefly described. Polyphase filters were already introduced by the 1970s and integrated circuit (IC) realizations to generate quadrature signals have been published since the mid-1990s. Although several publications where the performance of the PPFs has been studied either by theoretical calculations or simulations can be found in the literature, none of them covers all the relevant design parameters. In this thesis, the theory behind the PPFs is developed such that all the relevant design parameters needed in the practical circuit design have been calculated and presented with closed-form equations whenever possible. Although the main focus was on twoand three-stage PPFs, which are the most common ones encountered in practical ICs, the presented calculation methods can be extended to analyze the performance of multistage PPFs as well. The main application targets of the circuits presented in this thesis are the short-range wireless sensor system and ultrawideband (UWB). Sensors are capable of monitoring temperature, pressure, humidity, or acceleration, for example. The amount of transferred data is typically small and therefore a modest bit rate, less than 1 Mbps, is adequate. The sensor system applied in this thesis operates at 2.4-GHz ISM band (Industrial, Scientific, and Medical). Since the sensors must be able to operate independently for several years, extremely low power consumption is required. In sensor radios, the receiver current consumption is dominated by the blocks and elements operating at the RF. Therefore, the target was to develop circuits that can offer satisfactory performance with a current consumption level that is small compared to other receivers targeted for common cellular systems. On the other hand, there is a growing need for applications that can offer an extremely high data rate. UWB is one example of such a system. At the moment, it can offer data rates of up to 480 Mbps. There is a frequency spectrum allocated for UWB systems between 3.1 and 10.6 GHz. The UWB band is further divided into several narrower band groups (BG), each occupying a bandwidth of approximately 1.6 GHz. In this work, a direct-conversion RF front-end is designed for a dual-band UWB receiver, which operates in band groups BG1 and BG3, i.e. at 3.1 – 4.8 GHz and 6.3 – 7.9 GHz frequency areas, respectively. Clearly, an extremely wide bandwidth combined with a high operational frequency poses challenges for circuit design. The operational bandwidths and the interfaces between the circuit blocks need to be optimized to cover the wanted frequency areas. In addition, the wideband functionality should be achieved without using a number of on-chip inductors in order to minimize the die area, and yet the power consumption should be kept as small as possible. The characteristics of the two main target applications are quite different from each other with regard to power consumption, bandwidth, and operational frequency requirements. A common factor for both is their short, i.e. less than 10 meters, range. Although the circuits presented in this thesis are targeted on the two main applications mentioned above, they can be utilized in other kind of wireless communication systems as well. The performance of three experimental circuits was verified with measurements and the results are presented in this work. Two of them have been a part of a whole receiver including baseband amplifiers and filters and analog-to-digital converters. Experimental circuits were fabricated in a 0.13-µm CMOS process. In addition, this thesis includes design examples where new circuit ideas and implementation possibilities are introduced by using 0.13-µm and 65-nm CMOS processes. Furthermore, part of the theory presented in this thesis is validated with design examples in which actual IC component models are used.Tässä väitöskirjassa esitetty tutkimus keskittyy suoramuunnosvastaanottimen radiotaajuudella (radio frequency, RF) toimivien piirien suunnitteluun ja toteuttamiseen. Työ keskittyy vähäkohinaiseen vahvistimeen (low-noise amplifier, LNA), alassekoittajaan ja kvadratuurisen paikallisoskillaattorisignaalin tuottavaan piiriin. Työssä toteutettiin kolme RF-etupäätä erittäin kapean viivanleveyden CMOS-prosessilla, ja niiden kokeelliset tulokset esitetään. Vähäkohinainen vahvistin on yleensä ensimmäinen vahvistava lohko vastaanottimessa. Useita erilaisia vähäkohinaisia vahvistimia on esitetty kirjallisuudessa. Tämän työn kohteena ovat eritoten laajakaistaiset LNA-rakenteet. Tässä työssä analysoidaan taajuustasossa yleisimmät ja oleellisimmat LNA-topologiat. Lisäksi uusia LNA-rakenteita on esitetty tässä työssä ja niitä on verrattu muihin kirjallisuudessa esitettyihin piireihin. Tässä työssä LNA:t on toteutettu yhdessä alassekoittimen kanssa muodostaen RF-etupään. Työssä suunnitellut alassekoittimet perustuvat yleisesti käytettyyn Gilbertin soluun. Erilaisia sekoittajan suunnitteluvaihtoehtoja ja LNA:n ja alassekoittimen välisen rajapinnan toteutustapoja on esitetty. Tässä työssä kvadratuurinen paikallisoskillaattorisignaali on muodostettu joko käyttämällä taajuusjakajia tai monivaihesuodattimia. Erilaisia taajuusjakajia ja niiden toteutustapoja käsitellään yleisellä tasolla. Monivaihesuodatinta, joka on alunperin kehitetty jo 1970-luvulla, on käytetty integroiduissa piireissä kvadratuurisignaalin tuottamiseen 1990-luvun puolivälistä lähtien. Kirjallisuudesta löytyy lukuisia artikkeleita, joissa monivaihesuodattimen toimintaa on käsitelty teoreettisesti laskien ja simuloinnein. Kuitenkaan kaikkia sen suunnitteluparametreja ei tähän mennessä ole käsitelty. Tässä työssä monivaihesuodattimen teoriaa on kehitetty edelleen siten, että käytännön piirisuunnittelussa tarvittavat oleelliset parametrit on analysoitu ja suunnitteluyhtälöt on esitetty suljetussa muodossa aina kuin mahdollista. Vaikka työssä on keskitytty yleisimpiin eli kaksi- ja kolmiasteisiin monivaihesuodattimiin, on työssä esitetty menetelmät, joilla laskentaa voidaan jatkaa aina useampiasteisiin suodattimiin asti. Työssä esiteltyjen piirien pääkohteina ovat lyhyen kantaman sensoriradio ja erittäin laajakaistainen järjestelmä (ultrawideband, UWB). Sensoreilla voidaan tarkkailla esimerkiksi ympäristön lämpötilaa, kosteutta, painetta tai kiihtyvyyttä. Siirrettävän tiedon määrä on tyypillisesti vähäistä, jolloin pieni tiedonsiirtonopeus, alle 1 megabitti sekunnissa, on välttävä. Tämän työn kohteena oleva sensoriradiojärjestelmä toimii kapealla kaistalla 2,4 gigahertsin ISM-taajuusalueella (Industrial, Scientific, and Medical). Koska sensorien tavoitteena on toimia itsenäisesti ilman pariston vaihtoa useita vuosia, täytyy niiden kuluttaman virran olla erittäin vähäistä. Sensoriradiossa vastaanottimen tehonkulutuksen kannalta määräävässä asemassa ovat radiotaajuudella toimivat piirit. Tavoitteena oli tutkia ja kehittää piirirakenteita, joilla päästään tyydyttävään suorituskykyyn tehonkulutuksella, joka on vähäinen verrattuna muiden tavallisten langattomien tiedonsiirtojärjestelmien radiovastaanottimiin. Toisaalta viime aikoina on kasvanut tarvetta myös järjestelmille, jotka kykenevät tarjoamaan erittäin korkean tiedonsiirtonopeuden. UWB on esimerkki tällaisesta järjestelmästä. Tällä hetkellä se tarjoaa tiedonsiirtonopeuksia aina 480 megabittiin sekunnissa. UWB:lle on varattu taajuusalueita 3,1 ja 10,6 gigahertsin taajuuksien välillä. Kyseinen kaista on edelleen jaettu pienempiin taajuusryhmiin (band group, BG), joiden kaistanleveys on noin 1,6 gigahertsiä. Tässä työssä on toteutettu RF-etupää radiovastaanottimeen, joka pystyy toimimaan BG1:llä ja BG3:lla eli taajuusalueilla 3,1 - 4,7 GHz ja 6,3 - 7,9 GHz. Erittäin suuri kaistanleveys yhdistettynä korkeaan toimintataajuuteen tekee radiotaajuuspiirien suunnittelusta haasteellista. Piirirakenteiden toimintakaistat ja piirien väliset rajapinnat tulee optimoida riittävän laajoiksi käyttämättä kuitenkaan liian montaa piille integroitua kelaa piirin pinta-alan minimoimiseksi, ja lisäksi piirit tulisi toteuttaa mahdollisimman alhaisella tehonkulutuksella. Työssä esiteltyjen piirien kaksi pääkohdetta ovat hyvin erityyppisiä, mitä tulee tehonkulutus-, kaistanleveys- ja toimintataajuusvaatimuksiin. Yhteistä molemmille on lyhyt, alle 10 metrin kantama. Vaikka tässä työssä esitellyt piirit onkin kohdennettu kahteen pääsovelluskohteeseen, voidaan esitettyjä piirejä käyttää myös muiden tiedonsiirtojärjestelmien piirien suunnitteluun. Tässä työssä esitetään mittaustuloksineen yhteensä kolme kokeellista piiriä yllämainittuihin järjestelmiin. Kaksi ensimmäistä kokeellista piiriä muodostaa kokonaisen radiovastaanottimen yhdessä analogisten kantataajuusosien ja analogia-digitaali-muuntimien kanssa. Esitetyt kokeelliset piirit on toteutettu käyttäen 0,13 µm:n viivanleveyden CMOS-tekniikkaa. Näiden lisäksi työ pitää sisällään piirisuunnitteluesimerkkejä, joissa esitetään ideoita ja mahdollisuuksia käyttäen 0,13 µm:n ja 65 nm:n viivanleveyden omaavia CMOS-tekniikoita. Lisäksi piirisuunnitteluesimerkein havainnollistetaan työssä esitetyn teorian paikkansapitävyyttä käyttämällä oikeita komponenttimalleja.reviewe

    Clock Generation Design for Continuous-Time Sigma-Delta Analog-To-Digital Converter in Communication Systems

    Get PDF
    Software defined radio, a highly digitized wireless receiver, has drawn huge attention in modern communication system because it can not only benefit from the advanced technologies but also exploit large digital calibration of digital signal processing (DSP) to optimize the performance of receivers. Continuous-time (CT) bandpass sigma-delta (ΣΔ) modulator, used as an RF-to-digital converter, has been regarded as a potential solution for software defined ratio. The demand to support multiple standards motivates the development of a broadband CT bandpass ΣΔ which can cover the most commercial spectrum of 1GHz to 4GHz in a modern communication system. Clock generation, a major building block in radio frequency (RF) integrated circuits (ICs), usually uses a phase-locked loop (PLL) to provide the required clock frequency to modulate/demodulate the informative signals. This work explores the design of clock generation in RF ICs. First, a 2-16 GHz frequency synthesizer is proposed to provide the sampling clocks for a programmable continuous-time bandpass sigma-delta (ΣΔ) modulator in a software radio receiver system. In the frequency synthesizer, a single-sideband mixer combines feed-forward and regenerative mixing techniques to achieve the wide frequency range. Furthermore, to optimize the excess loop delay in the wideband system, a phase-tunable clock distribution network and a clock-controlled quantizer are proposed. Also, the false locking of regenerative mixing is solved by controlling the self-oscillation frequency of the CML divider. The proposed frequency synthesizer performs excellent jitter performance and efficient power consumption. Phase noise and quadrature phase accuracy are the common tradeoff in a quadrature voltage-controlled oscillator. A larger coupling ratio is preferred to obtain good phase accuracy but suffer phase noise performance. To address these fundamental trade-offs, a phasor-based analysis is used to explain bi-modal oscillation and compute the quadrature phase errors given by inevitable mismatches of components. Also, the ISF is used to estimate the noise contribution of each major noise source. A CSD QVCO is first proposed to eliminate the undesired bi-modal oscillation and enhance the quadrature phase accuracy. The second work presents a DCC QVCO. The sophisticated dynamic current-clipping coupling network reduces injecting noise into LC tank at most vulnerable timings (zero crossing points). Hence, it allows the use of strong coupling ratio to minimize the quadrature phase sensitivity to mismatches without degrading the phase noise performance. The proposed DCC QVCO is implemented in a 130-nm CMOS technology. The measured phase noise is -121 dBc/Hz at 1MHz offset from a 5GHz carrier. The QVCO consumes 4.2mW with a 1-V power supply, resulting in an outstanding Figure of Merit (FoM) of 189 dBc/Hz. Frequency divider is one of the most power hungry building blocks in a PLL-based frequency synthesizer. The complementary injection-locked frequency divider is proposed to be a low-power solution. With the complimentary injection schemes, the dividers can realize both even and odd division modulus, performing a more than 100% locking range to overcome the PVT variation. The proposed dividers feature excellent phase noise. They can be used for multiple-phase generation, programmable phase-switching frequency dividers, and phase-skewing circuits
    corecore