87 research outputs found

    Chaos embedded opposition based learning for gravitational search algorithm

    Full text link
    Due to its robust search mechanism, Gravitational search algorithm (GSA) has achieved lots of popularity from different research communities. However, stagnation reduces its searchability towards global optima for rigid and complex multi-modal problems. This paper proposes a GSA variant that incorporates chaos-embedded opposition-based learning into the basic GSA for the stagnation-free search. Additionally, a sine-cosine based chaotic gravitational constant is introduced to balance the trade-off between exploration and exploitation capabilities more effectively. The proposed variant is tested over 23 classical benchmark problems, 15 test problems of CEC 2015 test suite, and 15 test problems of CEC 2014 test suite. Different graphical, as well as empirical analyses, reveal the superiority of the proposed algorithm over conventional meta-heuristics and most recent GSA variants.Comment: 33 pages, 5 Figure

    An adaptive opposition-based learning selection: the case for Jaya algorithm

    Get PDF
    Over the years, opposition-based Learning (OBL) technique has been proven to effectively enhance the convergence of meta-heuristic algorithms. The fact that OBL is able to give alternative candidate solutions in one or more opposite directions ensures good exploration and exploitation of the search space. In the last decade, many OBL techniques have been established in the literature including the Standard-OBL, General-OBL, Quasi Reflection-OBL, Centre-OBL and Optimal-OBL. Although proven useful, much existing adoption of OBL into meta-heuristic algorithms has been based on a single technique. If the search space contains many peaks with potentially many local optima, relying on a single OBL technique may not be sufficiently effective. In fact, if the peaks are close together, relying on a single OBL technique may not be able to prevent entrapment in local optima. Addressing this issue, assembling a sequence of OBL techniques into meta-heuristic algorithm can be useful to enhance the overall search performance. Based on a simple penalized and reward mechanism, the best performing OBL is rewarded to continue its execution in the next cycle, whilst poor performing one will miss cease its current turn. This paper presents a new adaptive approach of integrating more than one OBL techniques into Jaya Algorithm, termed OBL-JA. Unlike other adoptions of OBL which use one type of OBL, OBL-JA uses several OBLs and their selections will be based on each individual performance. Experimental results using the combinatorial testing problems as case study demonstrate that OBL-JA shows very competitive results against the existing works in term of the test suite size. The results also show that OBL-JA performs better than standard Jaya Algorithm in most of the tested cases due to its ability to adapt its behaviour based on the current performance feedback of the search process

    A dynamic neighborhood learning-based gravitational search algorithm

    Get PDF
    Balancing exploration and exploitation according to evolutionary states is crucial to meta-heuristic search (M-HS) algorithms. Owing to its simplicity in theory and effectiveness in global optimization, gravitational search algorithm (GSA) has attracted increasing attention in recent years. However, the tradeoff between exploration and exploitation in GSA is achieved mainly by adjusting the size of an archive, named Kbest, which stores those superior agents after fitness sorting in each iteration. Since the global property of Kbest remains unchanged in the whole evolutionary process, GSA emphasizes exploitation over exploration and suffers from rapid loss of diversity and premature convergence. To address these problems, in this paper, we propose a dynamic neighborhood learning (DNL) strategy to replace the Kbest model and thereby present a DNL-based GSA (DNLGSA). The method incorporates the local and global neighborhood topologies for enhancing the exploration and obtaining adaptive balance between exploration and exploitation. The local neighborhoods are dynamically formed based on evolutionary states. To delineate the evolutionary states, two convergence criteria named limit value and population diversity, are introduced. Moreover, a mutation operator is designed for escaping from the local optima on the basis of evolutionary states. The proposed algorithm was evaluated on 27 benchmark problems with different characteristic and various difficulties. The results reveal that DNLGSA exhibits competitive performances when compared with a variety of state-of-the-art M-HS algorithms. Moreover, the incorporation of local neighborhood topology reduces the numbers of calculations of gravitational force and thus alleviates the high computational cost of GSA

    Hybridization of modified sine cosine algorithm with tabu search for solving quadratic assignment problem

    Get PDF
    Sine Cosine Algorithm (SCA) is a population-based metaheuristic method that widely used to solve various optimization problem due to its ability in stabilizing between exploration and exploitation. However, SCA is rarely used to solve discrete optimization problem such as Quadratic Assignment Problem (QAP) due to the nature of its solution which produce continuous values and makes it challenging in solving discrete optimization problem. The SCA is also found to be trapped in local optima since its lacking in memorizing the moves. Besides, local search strategy is required in attaining superior results and it is usually designed based on the problem under study. Hence, this study aims to develop a hybrid modified SCA with Tabu Search (MSCA-TS) model to solve QAP. In QAP, a set of facilities is assigned to a set of locations to form a one-to-one assignment with minimum assignment cost. Firstly, the modified SCA (MSCA) model with cost-based local search strategy is developed. Then, the MSCA is hybridized with TS to prohibit revisiting the previous solutions. Finally, both designated models (MSCA and MSCA-TS) were tested on 60 QAP instances from QAPLIB. A sensitivity analysis is also performed to identify suitable parameter settings for both models. Comparison of results shows that MSCA-TS performs better than MSCA. The percentage of error and standard deviation for MSCA-TS are lower than the MSCA which are 2.4574 and 0.2968 respectively. The computational results also shows that the MSCA-TS is an effective and superior method in solving QAP when compared to the best-known solutions presented in the literature. The developed models may assist decision makers in searching the most suitable assignment for facilities and locations while minimizing cost
    • …
    corecore