579 research outputs found

    An improved chaotic image encryption algorithm

    Get PDF
    Chaotic-based image encryption algorithms are countless in number. Encryption techniques based on Chaos are among the most effectual algorithms for encryption of data image. In past works, chaos-based cryptosystems applied the chaotic dynamical system with the linkage to the harmonization of two chaotic systems and controls. Good performances have resulted but there were several downsides pertaining to the single rule usage by each, impacting security, privacy and dependability of the techniques mentioned. Serious problems were also documented in their usage in satellite imagery. As a possible solution, a novel chaos-based symmetric method of key cryptosystem is proposed in this paper. This method employs external secret key that Logistic, Henon and Gauss iterated maps have previously expanded. For creating the secret key matrix for image encryption, these maps are merged. Here, simple logical XOR and multiple key generation processes were applied. Assessment to the method is performed on the satellite images dataset, and security is evaluated through the experimental analysis. As evidenced, the chaos-based satellite image cryptosystem demonstrates appropriateness for satellite image encryption and decryption in the preservation of security and dependability of the storage and transmission process

    Cryptographic requirements for chaotic secure communications

    Get PDF
    In recent years, a great amount of secure communications systems based on chaotic synchronization have been published. Most of the proposed schemes fail to explain a number of features of fundamental importance to all cryptosystems, such as key definition, characterization, and generation. As a consequence, the proposed ciphers are difficult to realize in practice with a reasonable degree of security. Likewise, they are seldom accompanied by a security analysis. Thus, it is hard for the reader to have a hint about their security. In this work we provide a set of guidelines that every new cryptosystems would benefit from adhering to. The proposed guidelines address these two main gaps, i.e., correct key management and security analysis, to help new cryptosystems be presented in a more rigorous cryptographic way. Also some recommendations are offered regarding some practical aspects of communications, such as channel noise, limited bandwith, and attenuation.Comment: 13 pages, 3 figure

    Breaking a chaos-noise-based secure communication scheme

    Full text link
    This paper studies the security of a secure communication scheme based on two discrete-time intermittently-chaotic systems synchronized via a common random driving signal. Some security defects of the scheme are revealed: 1) the key space can be remarkably reduced; 2) the decryption is insensitive to the mismatch of the secret key; 3) the key-generation process is insecure against known/chosen-plaintext attacks. The first two defects mean that the scheme is not secure enough against brute-force attacks, and the third one means that an attacker can easily break the cryptosystem by approximately estimating the secret key once he has a chance to access a fragment of the generated keystream. Yet it remains to be clarified if intermittent chaos could be used for designing secure chaotic cryptosystems.Comment: RevTeX4, 11 pages, 15 figure

    Error Function Attack of chaos synchronization based encryption schemes

    Full text link
    Different chaos synchronization based encryption schemes are reviewed and compared from the practical point of view. As an efficient cryptanalysis tool for chaos encryption, a proposal based on the Error Function Attack is presented systematically and used to evaluate system security. We define a quantitative measure (Quality Factor) of the effective applicability of a chaos encryption scheme, which takes into account the security, the encryption speed, and the robustness against channel noise. A comparison is made of several encryption schemes and it is found that a scheme based on one-way coupled chaotic map lattices performs outstandingly well, as judged from Quality Factor
    corecore