39 research outputs found

    A Survey of Symbolic Methods in Computational Analysis of Cryptographic Systems

    Get PDF
    Since the 1980s, two approaches have been developed for analyzing security protocols. One of the approaches relies on a computational model that considers issues of complexity and probability. This approach captures a strong notion of security, guaranteed against all probabilistic polynomial-time attacks. The other approach relies on a symbolic model of protocol executions in which cryptographic primitives are treated as black boxes. Since the seminal work of Dolev and Yao, it has been realized that this latter approach enables significantly simpler and often automated proofs. However, the guarantees that it offers have been quite unclear. For more than twenty years the two approaches have coexisted but evolved mostly independently. Recently, significant research efforts attempt to develop paradigms for cryptographic systems analysis that combines the best of both worlds. There are two broad directions that have been followed. {\em Computational soundness} aims to establish sufficient conditions under which results obtained using symbolic models imply security under computational models. The {\em direct approach} aims to apply the principles and the techniques developed in the context of symbolic models directly to computational ones. In this paper we survey existing results along both of these directions. Our goal is to provide a rather complete summary that could act as a quick reference for researchers who want to contribute to the field, want to make use of existing results, or just want to get a better picture of what results already exist

    Real-or-Random Key Secrecy of the Otway-Rees Protocol via a Symbolic Security Proof

    Get PDF
    AbstractWe present the first cryptographically sound security proof of the well-known Otway-Rees protocol. More precisely, we show that the protocol is secure against arbitrary active attacks including concurrent protocol runs if it is implemented using provably secure cryptographic primitives. We prove secrecy of the exchanged keys with respect to the accepted cryptographic definition of real-or-random secrecy, i.e., indistinguishability of exchanged keys and random ones, given the view of a general cryptographic attacker. Although we achieve security under cryptographic definitions, our proof is performed in a deterministic setting corresponding to a slightly extended Dolev-Yao model; in particular, it does not have to deal with probabilistic aspects of cryptography and is hence in the scope of current proof tools. The reason is that we exploit a recently proposed ideal cryptographic library, which has a provably secure cryptographic implementation, as well as recent results on linking symbolic and cryptographic key secrecy. Besides establishing the cryptographic security of the Otway-Rees protocol, our result also exemplifies the potential of this cryptographic library and the recent secrecy preservation theorem for symbolic yet cryptographically sound proofs of security

    07421 Abstracts Collection -- Formal Protocol Verification Applied

    Get PDF
    From 14/10/2007 to 19/10/2007, the Dagstuhl Seminar 07421 ``Formal Protocol Verification Applied\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available
    corecore