1,292 research outputs found

    Learning Visual Importance for Graphic Designs and Data Visualizations

    Full text link
    Knowing where people look and click on visual designs can provide clues about how the designs are perceived, and where the most important or relevant content lies. The most important content of a visual design can be used for effective summarization or to facilitate retrieval from a database. We present automated models that predict the relative importance of different elements in data visualizations and graphic designs. Our models are neural networks trained on human clicks and importance annotations on hundreds of designs. We collected a new dataset of crowdsourced importance, and analyzed the predictions of our models with respect to ground truth importance and human eye movements. We demonstrate how such predictions of importance can be used for automatic design retargeting and thumbnailing. User studies with hundreds of MTurk participants validate that, with limited post-processing, our importance-driven applications are on par with, or outperform, current state-of-the-art methods, including natural image saliency. We also provide a demonstration of how our importance predictions can be built into interactive design tools to offer immediate feedback during the design process

    Preference Modeling in Data-Driven Product Design: Application in Visual Aesthetics

    Full text link
    Creating a form that is attractive to the intended market audience is one of the greatest challenges in product development given the subjective nature of preference and heterogeneous market segments with potentially different product preferences. Accordingly, product designers use a variety of qualitative and quantitative research tools to assess product preferences across market segments, such as design theme clinics, focus groups, customer surveys, and design reviews; however, these tools are still limited due to their dependence on subjective judgment, and being time and resource intensive. In this dissertation, we focus on a key research question: how can we understand and predict more reliably the preference for a future product in heterogeneous markets, so that this understanding can inform designers' decision-making? We present a number of data-driven approaches to model product preference. Instead of depending on any subjective judgment from human, the proposed preference models investigate the mathematical patterns behind users’ choice and behavior. This allows a more objective translation of customers' perception and preference into analytical relations that can inform design decision-making. Moreover, these models are scalable in that they have the capacity to analyze large-scale data and model customer heterogeneity accurately across market segments. In particular, we use feature representation as an intermediate step in our preference model, so that we can not only increase the predictive accuracy of the model but also capture in-depth insight into customers' preference. We tested our data-driven approaches with applications in visual aesthetics preference. Our results show that the proposed approaches can obtain an objective measurement of aesthetic perception and preference for a given market segment. This measurement enables designers to reliably evaluate and predict the aesthetic appeal of their designs. We also quantify the relative importance of aesthetic attributes when both aesthetic attributes and functional attributes are considered by customers. This quantification has great utility in helping product designers and executives in design reviews and selection of designs. Moreover, we visualize the possible factors affecting customers' perception of product aesthetics and how these factors differ across different market segments. Those visualizations are incredibly important to designers as they relate physical design details to psychological customer reactions. The main contribution of this dissertation is to present purely data-driven approaches that enable designers to quantify and interpret more reliably the product preference. Methodological contributions include using modern probabilistic approaches and feature learning algorithms to quantitatively model the design process involving product aesthetics. These novel approaches can not only increase the predictive accuracy but also capture insights to inform design decision-making.PHDDesign ScienceUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/145987/1/yanxinp_1.pd

    Opinion mining and sentiment analysis in marketing communications: a science mapping analysis in Web of Science (1998–2018)

    Get PDF
    Opinion mining and sentiment analysis has become ubiquitous in our society, with applications in online searching, computer vision, image understanding, artificial intelligence and marketing communications (MarCom). Within this context, opinion mining and sentiment analysis in marketing communications (OMSAMC) has a strong role in the development of the field by allowing us to understand whether people are satisfied or dissatisfied with our service or product in order to subsequently analyze the strengths and weaknesses of those consumer experiences. To the best of our knowledge, there is no science mapping analysis covering the research about opinion mining and sentiment analysis in the MarCom ecosystem. In this study, we perform a science mapping analysis on the OMSAMC research, in order to provide an overview of the scientific work during the last two decades in this interdisciplinary area and to show trends that could be the basis for future developments in the field. This study was carried out using VOSviewer, CitNetExplorer and InCites based on results from Web of Science (WoS). The results of this analysis show the evolution of the field, by highlighting the most notable authors, institutions, keywords, publications, countries, categories and journals.The research was funded by Programa Operativo FEDER Andalucía 2014‐2020, grant number “La reputación de las organizaciones en una sociedad digital. Elaboración de una Plataforma Inteligente para la Localización, Identificación y Clasificación de Influenciadores en los Medios Sociales Digitales (UMA18‐ FEDERJA‐148)” and The APC was funded by the same research gran

    Are all the frames equally important?

    Full text link
    In this work, we address the problem of measuring and predicting temporal video saliency - a metric which defines the importance of a video frame for human attention. Unlike the conventional spatial saliency which defines the location of the salient regions within a frame (as it is done for still images), temporal saliency considers importance of a frame as a whole and may not exist apart from context. The proposed interface is an interactive cursor-based algorithm for collecting experimental data about temporal saliency. We collect the first human responses and perform their analysis. As a result, we show that qualitatively, the produced scores have very explicit meaning of the semantic changes in a frame, while quantitatively being highly correlated between all the observers. Apart from that, we show that the proposed tool can simultaneously collect fixations similar to the ones produced by eye-tracker in a more affordable way. Further, this approach may be used for creation of first temporal saliency datasets which will allow training computational predictive algorithms. The proposed interface does not rely on any special equipment, which allows to run it remotely and cover a wide audience.Comment: CHI'20 Late Breaking Work
    corecore