3,151 research outputs found

    Crowd Disasters as Systemic Failures: Analysis of the Love Parade Disaster

    Get PDF
    Each year, crowd disasters happen in different areas of the world. How and why do such disasters happen? Are the fatalities caused by relentless behavior of people or a psychological state of panic that makes the crowd 'go mad'? Or are they a tragic consequence of a breakdown of coordination? These and other questions are addressed, based on a qualitative analysis of publicly available videos and materials, which document the planning and organization of the Love Parade in Duisburg, Germany, and the crowd disaster on July 24, 2010. Our analysis reveals a number of misunderstandings that have widely spread. We also provide a new perspective on concepts such as 'intentional pushing', 'mass panic', 'stampede', and 'crowd crushs'. The focus of our analysis is on the contributing causal factors and their mutual interdependencies, not on legal issues or the judgment of personal or institutional responsibilities. Video recordings show that, in Duisburg, people stumbled and piled up due to a 'domino effect', resulting from a phenomenon called 'crowd turbulence' or 'crowd quake'. Crowd quakes are a typical reason for crowd disasters, to be distinguished from crowd disasters resulting from 'panic stampedes' or 'crowd crushes'. In Duisburg, crowd turbulence was the consequence of amplifying feedback and cascading effects, which are typical for systemic instabilities. Accordingly, things can go terribly wrong in spite of no bad intentions from anyone. Comparing the incident in Duisburg with others, we give recommendations to help prevent future crowd disasters. In particular, we introduce a new scale to assess the criticality of conditions in the crowd. This may allow preventative measures to be taken earlier on. Furthermore, we discuss the merits and limitations of citizen science for public investigation, considering that today, almost every event is recorded and reflected in the World Wide Web.Comment: For a collection of links to complementary video materials see http://loveparadevideos.heroku.com/ For related work see http://www.soms.ethz.c

    Guidelines for assessing pedestrian evacuation software applications

    Get PDF
    This paper serves to clearly identify and explain criteria to consider when evaluating the suitability of a pedestrian evacuation software application to assess the evacuation process of a building. Guidelines in the form of nine topic areas identify different modelling approaches adopted, as well as features / functionality provided by applications designed specifically for simulating the egress of pedestrians from inside a building. The paper concludes with a synopsis of these guidelines, identifying key questions (by topic area) to found an evaluation

    Macroscopic modeling and simulations of room evacuation

    Full text link
    We analyze numerically two macroscopic models of crowd dynamics: the classical Hughes model and the second order model being an extension to pedestrian motion of the Payne-Whitham vehicular traffic model. The desired direction of motion is determined by solving an eikonal equation with density dependent running cost, which results in minimization of the travel time and avoidance of congested areas. We apply a mixed finite volume-finite element method to solve the problems and present error analysis for the eikonal solver, gradient computation and the second order model yielding a first order convergence. We show that Hughes' model is incapable of reproducing complex crowd dynamics such as stop-and-go waves and clogging at bottlenecks. Finally, using the second order model, we study numerically the evacuation of pedestrians from a room through a narrow exit.Comment: 22 page

    Can cooperation slow down emergency evacuations?

    Get PDF
    We study the motion of pedestrians through obscure corridors where the lack of visibility hides the precise position of the exits. Using a lattice model, we explore the effects of cooperation on the overall exit flux (evacuation rate). More precisely, we study the effect of the buddying threshold (of no--exclusion per site) on the dynamics of the crowd. In some cases, we note that if the evacuees tend to cooperate and act altruistically, then their collective action tends to favor the occurrence of disasters.Comment: arXiv admin note: text overlap with arXiv:1203.485

    The Cry Wolf Effect in Evacuation: a Game-Theoretic Approach

    Full text link
    In today's terrorism-prone and security-focused world, evacuation emergencies, drills, and false alarms are becoming more and more common. Compliance to an evacuation order made by an authority in case of emergency can play a key role in the outcome of an emergency. In case an evacuee experiences repeated emergency scenarios which may be a false alarm (e.g., an evacuation drill, a false bomb threat, etc.) or an actual threat, the Aesop's cry wolf effect (repeated false alarms decrease order compliance) can severely affect his/her likelihood to evacuate. To analyse this key unsolved issue of evacuation research, a game-theoretic approach is proposed. Game theory is used to explore mutual best responses of an evacuee and an authority. In the proposed model the authority obtains a signal of whether there is a threat or not and decides whether to order an evacuation or not. The evacuee, after receiving an evacuation order, subsequently decides whether to stay or leave based on posterior beliefs that have been updated in response to the authority's action. Best-responses are derived and Sequential equilibrium and Perfect Bayesian Equilibrium are used as solution concepts (refining equilibria with the intuitive criterion). Model results highlight the benefits of announced evacuation drills and suggest that improving the accuracy of threat detection can prevent large inefficiencies associated with the cry wolf effect.Comment: To be published in Physica
    • …
    corecore