45 research outputs found

    Review of coreference resolution in English and Persian

    Full text link
    Coreference resolution (CR) is one of the most challenging areas of natural language processing. This task seeks to identify all textual references to the same real-world entity. Research in this field is divided into coreference resolution and anaphora resolution. Due to its application in textual comprehension and its utility in other tasks such as information extraction systems, document summarization, and machine translation, this field has attracted considerable interest. Consequently, it has a significant effect on the quality of these systems. This article reviews the existing corpora and evaluation metrics in this field. Then, an overview of the coreference algorithms, from rule-based methods to the latest deep learning techniques, is provided. Finally, coreference resolution and pronoun resolution systems in Persian are investigated.Comment: 44 pages, 11 figures, 5 table

    Deep Learning With Sentiment Inference For Discourse-Oriented Opinion Analysis

    Get PDF
    Opinions are omnipresent in written and spoken text ranging from editorials, reviews, blogs, guides, and informal conversations to written and broadcast news. However, past research in NLP has mainly addressed explicit opinion expressions, ignoring implicit opinions. As a result, research in opinion analysis has plateaued at a somewhat superficial level, providing methods that only recognize what is explicitly said and do not understand what is implied. In this dissertation, we develop machine learning models for two tasks that presumably support propagation of sentiment in discourse, beyond one sentence. The first task we address is opinion role labeling, i.e.\ the task of detecting who expressed a given attitude toward what or who. The second task is abstract anaphora resolution, i.e.\ the task of finding a (typically) non-nominal antecedent of pronouns and noun phrases that refer to abstract objects like facts, events, actions, or situations in the preceding discourse. We propose a neural model for labeling of opinion holders and targets and circumvent the problems that arise from the limited labeled data. In particular, we extend the baseline model with different multi-task learning frameworks. We obtain clear performance improvements using semantic role labeling as the auxiliary task. We conduct a thorough analysis to demonstrate how multi-task learning helps, what has been solved for the task, and what is next. We show that future developments should improve the ability of the models to capture long-range dependencies and consider other auxiliary tasks such as dependency parsing or recognizing textual entailment. We emphasize that future improvements can be measured more reliably if opinion expressions with missing roles are curated and if the evaluation considers all mentions in opinion role coreference chains as well as discontinuous roles. To the best of our knowledge, we propose the first abstract anaphora resolution model that handles the unrestricted phenomenon in a realistic setting. We cast abstract anaphora resolution as the task of learning attributes of the relation that holds between the sentence with the abstract anaphor and its antecedent. We propose a Mention-Ranking siamese-LSTM model (MR-LSTM) for learning what characterizes the mentioned relation in a data-driven fashion. The current resources for abstract anaphora resolution are quite limited. However, we can train our models without conventional data for abstract anaphora resolution. In particular, we can train our models on many instances of antecedent-anaphoric sentence pairs. Such pairs can be automatically extracted from parsed corpora by searching for a common construction which consists of a verb with an embedded sentence (complement or adverbial), applying a simple transformation that replaces the embedded sentence with an abstract anaphor, and using the cut-off embedded sentence as the antecedent. We refer to the extracted data as silver data. We evaluate our MR-LSTM models in a realistic task setup in which models need to rank embedded sentences and verb phrases from the sentence with the anaphor as well as a few preceding sentences. We report the first benchmark results on an abstract anaphora subset of the ARRAU corpus \citep{uryupina_et_al_2016} which presents a greater challenge due to a mixture of nominal and pronominal anaphors as well as a greater range of confounders. We also use two additional evaluation datasets: a subset of the CoNLL-12 shared task dataset \citep{pradhan_et_al_2012} and a subset of the ASN corpus \citep{kolhatkar_et_al_2013_crowdsourcing}. We show that our MR-LSTM models outperform the baselines in all evaluation datasets, except for events in the CoNLL-12 dataset. We conclude that training on the small-scale gold data works well if we encounter the same type of anaphors at the evaluation time. However, the gold training data contains only six shell nouns and events and thus resolution of anaphors in the ARRAU corpus that covers a variety of anaphor types benefits from the silver data. Our MR-LSTM models for resolution of abstract anaphors outperform the prior work for shell noun resolution \citep{kolhatkar_et_al_2013} in their restricted task setup. Finally, we try to get the best out of the gold and silver training data by mixing them. Moreover, we speculate that we could improve the training on a mixture if we: (i) handle artifacts in the silver data with adversarial training and (ii) use multi-task learning to enable our models to make ranking decisions dependent on the type of anaphor. These proposals give us mixed results and hence a robust mixed training strategy remains a challenge

    A Survey on Semantic Processing Techniques

    Full text link
    Semantic processing is a fundamental research domain in computational linguistics. In the era of powerful pre-trained language models and large language models, the advancement of research in this domain appears to be decelerating. However, the study of semantics is multi-dimensional in linguistics. The research depth and breadth of computational semantic processing can be largely improved with new technologies. In this survey, we analyzed five semantic processing tasks, e.g., word sense disambiguation, anaphora resolution, named entity recognition, concept extraction, and subjectivity detection. We study relevant theoretical research in these fields, advanced methods, and downstream applications. We connect the surveyed tasks with downstream applications because this may inspire future scholars to fuse these low-level semantic processing tasks with high-level natural language processing tasks. The review of theoretical research may also inspire new tasks and technologies in the semantic processing domain. Finally, we compare the different semantic processing techniques and summarize their technical trends, application trends, and future directions.Comment: Published at Information Fusion, Volume 101, 2024, 101988, ISSN 1566-2535. The equal contribution mark is missed in the published version due to the publication policies. Please contact Prof. Erik Cambria for detail

    Coreference Resolution for Arabic

    Get PDF
    Recently, there has been enormous progress in coreference resolution. These recent developments were applied to Chinese, English and other languages, with outstanding results. However, languages with a rich morphology or fewer resources, such as Arabic, have not received as much attention. In fact, when this PhD work started there was no neural coreference resolver for Arabic, and we were not aware of any learning-based coreference resolver for Arabic since [Björkelund and Kuhn, 2014]. In addition, as far as we know, whereas lots of attention had been devoted to the phemomenon of zero anaphora in languages such as Chinese or Japanese, no neural model for Arabic zero-pronoun anaphora had been developed. In this thesis, we report on a series of experiments on Arabic coreference resolution in general and on zero anaphora in particular. We propose a new neural coreference resolver for Arabic, and we present a series of models for identifying and resolving Arabic zero pronouns. Our approach for zero-pronoun identification and resolution is applicable to other languages, and was also evaluated on Chinese, with results surpassing the state of the art at the time. This research also involved producing revised versions of standard datasets for Arabic coreference

    Structured learning with latent trees: a joint approach to coreference resolution

    Get PDF
    This thesis explores ways to define automated coreference resolution systems by using structured machine learning techniques. We design supervised models that learn to build coreference clusters from raw text: our main objective is to get model able to process documentsglobally, in a structured fashion, to ensure coherent outputs. Our models are trained and evaluated on the English part of the CoNLL-2012 Shared Task annotated corpus with standard metrics. We carry out detailed comparisons of different settings so as to refine our models anddesign a complete end-to-end coreference resolver. Specifically, we first carry out a preliminary work on improving the way features areemployed by linear models for classification: we extend existing work on separating different types of mention pairs to define more accurate classifiers of coreference links. We then define various structured models based on latent trees to learn to build clusters globally, andnot only from the predictions of a mention pair classifier. We study different latent representations (various shapes and sparsity) and show empirically that the best suited structure is some restricted class of trees related to the best-first rule for selecting coreference links. Wefurther improve this latent representation by integrating anaphoricity modelling jointly with coreference, designing a global (structured at the document level) and joint model outperforming existing models on gold mentions evaluation. We finally design a complete end-to-endresolver and evaluate the improvement obtained by our new models on detected mentions, a more realistic setting for coreference resolution
    corecore