37,959 research outputs found

    A Survey on Multimedia-Based Cross-Layer Optimization in Visual Sensor Networks

    Get PDF
    Visual sensor networks (VSNs) comprised of battery-operated electronic devices endowed with low-resolution cameras have expanded the applicability of a series of monitoring applications. Those types of sensors are interconnected by ad hoc error-prone wireless links, imposing stringent restrictions on available bandwidth, end-to-end delay and packet error rates. In such context, multimedia coding is required for data compression and error-resilience, also ensuring energy preservation over the path(s) toward the sink and improving the end-to-end perceptual quality of the received media. Cross-layer optimization may enhance the expected efficiency of VSNs applications, disrupting the conventional information flow of the protocol layers. When the inner characteristics of the multimedia coding techniques are exploited by cross-layer protocols and architectures, higher efficiency may be obtained in visual sensor networks. This paper surveys recent research on multimedia-based cross-layer optimization, presenting the proposed strategies and mechanisms for transmission rate adjustment, congestion control, multipath selection, energy preservation and error recovery. We note that many multimedia-based cross-layer optimization solutions have been proposed in recent years, each one bringing a wealth of contributions to visual sensor networks

    Adaptive Cross-Layer Multipath Routing Protocol for Mobile Ad Hoc Networks

    Full text link
    [EN] Mobile ad hoc networks (MANETs) are generally created for temporary scenarios. In such scenarios, where nodes are in mobility, efficient routing is a challenging task. In this paper, we propose an adaptive and cross-layer multipath routing protocol for such changing scenarios. Our routing mechanisms operate keeping in view the type of applications. For simple applications, the proposed protocol is inspired from traditional on-demand routing protocols by searching shortest routes from source to destination using default parameters. In case of multimedia applications, the proposed mechanism considers such routes which are capable of providing more data rates having less packet loss ratio. For those applications which need security, the proposed mechanism searches such routes which are more secure in nature as compared to others. Cross-layer methodology is used in proposed routing scheme so as to exchange different parameters across the protocol stack for better decision-making at network layer. Our approach is efficient and fault tolerant in a variety of scenarios that we simulated and tested.The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for funding this research group no. 037-1435-RG.Iqbal, Z.; Khan, S.; Mehmood, A.; Lloret, J.; Alrajeh, NA. (2016). Adaptive Cross-Layer Multipath Routing Protocol for Mobile Ad Hoc Networks. Journal of Sensors. 2016:1-18. https://doi.org/10.1155/2016/5486437S1182016Abusalah, L., Khokhar, A., & Guizani, M. (2008). A survey of secure mobile Ad Hoc routing protocols. IEEE Communications Surveys & Tutorials, 10(4), 78-93. doi:10.1109/surv.2008.080407Murthy, S., & Garcia-Luna-Aceves, J. J. (1996). An efficient routing protocol for wireless networks. Mobile Networks and Applications, 1(2), 183-197. doi:10.1007/bf01193336Toh, C.-K. (1997). Wireless Personal Communications, 4(2), 103-139. doi:10.1023/a:1008812928561Pearlman, M. R., & Haas, Z. J. (1999). Determining the optimal configuration for the zone routing protocol. IEEE Journal on Selected Areas in Communications, 17(8), 1395-1414. doi:10.1109/49.779922ZHEN, Y., WU, M., WU, D., ZHANG, Q., & XU, C. (2010). Toward path reliability by using adaptive multi-path routing mechanism for multimedia service in mobile Ad-hoc network. The Journal of China Universities of Posts and Telecommunications, 17(1), 93-100. doi:10.1016/s1005-8885(09)60431-3Sivakumar, R., Sinha, P., & Bharghavan, V. (1999). CEDAR: a core-extraction distributed ad hoc routing algorithm. IEEE Journal on Selected Areas in Communications, 17(8), 1454-1465. doi:10.1109/49.779926Zapata, M. G. (2002). Secure ad hoc on-demand distance vector routing. ACM SIGMOBILE Mobile Computing and Communications Review, 6(3), 106-107. doi:10.1145/581291.581312Khan, S., & Loo, J. (2010). Cross Layer Secure and Resource-Aware On-Demand Routing Protocol for Hybrid Wireless Mesh Networks. Wireless Personal Communications, 62(1), 201-214. doi:10.1007/s11277-010-0048-ySharma, V., & Alam, B. (2012). Unicaste Routing Protocols in Mobile Ad Hoc Networks: A Survey. International Journal of Computer Applications, 51(14), 9-18. doi:10.5120/8108-1714Tarique, M., Tepe, K. E., Adibi, S., & Erfani, S. (2009). Survey of multipath routing protocols for mobile ad hoc networks. Journal of Network and Computer Applications, 32(6), 1125-1143. doi:10.1016/j.jnca.2009.07.002Shiwen Mao, Shunan Lin, Yao Wang, Panwar, S. S., & Yihan Li. (2005). Multipath video transport over ad hoc networks. IEEE Wireless Communications, 12(4), 42-49. doi:10.1109/mwc.2005.1497857Li, Z., Chen, Q., Zhu, G., Choi, Y., & Sekiya, H. (2015). A Low Latency, Energy Efficient MAC Protocol for Wireless Sensor Networks. International Journal of Distributed Sensor Networks, 11(8), 946587. doi:10.1155/2015/946587Zheng, Z., Liu, A., Cai, L. X., Chen, Z., & Shen, X. (2016). Energy and memory efficient clone detection in wireless sensor networks. IEEE Transactions on Mobile Computing, 15(5), 1130-1143. doi:10.1109/tmc.2015.2449847Dong, M., Ota, K., Liu, A., & Guo, M. (2016). Joint Optimization of Lifetime and Transport Delay under Reliability Constraint Wireless Sensor Networks. IEEE Transactions on Parallel and Distributed Systems, 27(1), 225-236. doi:10.1109/tpds.2015.2388482Hamrioui, S., Lorenz, P., Lloret, J., & Lalam, M. (2013). A Cross Layer Solution for Better Interactions Between Routing and Transport Protocols in MANET. Journal of Computing and Information Technology, 21(3), 137. doi:10.2498/cit.1002136Sanchez-Iborra, R., & Cano, M.-D. (2014). An approach to a cross layer-based QoE improvement for MANET routing protocols. Network Protocols and Algorithms, 6(3), 18. doi:10.5296/npa.v6i3.5827Cho, J.-H., Swami, A., & Chen, I.-R. (2011). A Survey on Trust Management for Mobile Ad Hoc Networks. IEEE Communications Surveys & Tutorials, 13(4), 562-583. doi:10.1109/surv.2011.092110.0008

    An altruistic cross-layer recovering mechanism for ad hoc wireless networks

    Full text link
    Video streaming services have restrictive delay and bandwidth constraints. Ad hoc networks represent a hostile environment for this kind of real-time data transmission. Emerging mesh networks, where a backbone provides more topological stability, do not even assure a high quality of experience. In such scenario, mobility of terminal nodes causes link breakages until a new route is calculated. In the meanwhile, lost packets cause annoying video interruptions to the receiver. This paper proposes a new mechanism of recovering lost packets by means of caching overheard packets in neighbor nodes and retransmit them to destination. Moreover, an optimization is shown, which involves a video-aware cache in order to recover full frames and prioritize more significant frames. Results show the improvement in reception, increasing the throughput as well as video quality, whereas larger video interruptions are considerably reduced. Copyright © 2014 John Wiley & Sons, Ltd.Arce Vila, P.; Guerri Cebollada, JC. (2015). An altruistic cross-layer recovering mechanism for ad hoc wireless networks. Wireless Communications and Mobile Computing. 15(13):1744-1758. doi:10.1002/wcm.2459S174417581513Li J Blake C De Couto DSJ Lee HI Morris R Capacity of ad hoc wireless networks Proceedings of the 7th Annual International Conference on Mobile Computing and Networks (MobiCom) 2001 61 69Akyildiz, I. F., & Xudong Wang. (2005). A survey on wireless mesh networks. IEEE Communications Magazine, 43(9), S23-S30. doi:10.1109/mcom.2005.1509968Hsu, C.-J., Liu, H.-I., & Seah, W. K. G. (2011). Opportunistic routing – A review and the challenges ahead. Computer Networks, 55(15), 3592-3603. doi:10.1016/j.comnet.2011.06.021Huang, X., Zhai, H., & Fang, Y. (2008). Robust cooperative routing protocol in mobile wireless sensor networks. IEEE Transactions on Wireless Communications, 7(12), 5278-5285. doi:10.1109/t-wc.2008.060680Wieselthier, J. E., Nguyen, G. D., & Ephremides, A. (2001). Mobile Networks and Applications, 6(3), 251-263. doi:10.1023/a:1011478717164Clausen T Jacquet P Optimized Link State Routing Protocol (OLSR), IETF RFC 3626 2003 http://www.rfc-editor.org/rfc/rfc3626.txtMarina, M. K., & Das, S. R. (2006). Ad hoc on-demand multipath distance vector routing. Wireless Communications and Mobile Computing, 6(7), 969-988. doi:10.1002/wcm.432Zhou X Lu Y Ma HG Routing improvement using multiple disjoint paths for ad hoc networks International Conference on Wireless and Optical Communications Networks (IFIP) 2006 1 5Fujisawa H Minami H Yamamoto M Izumi Y Fujita Y Route selection using retransmission packets for video streaming on ad hoc networks IEEE Conference on Radio and Wireless Symposium (RWS) 2006 607 610Badis H Agha KA QOLSR multi-path routing for mobile ad hoc networks based on multiple metrics: bandwidth and delay IEEE 59th Vehicular Technology Conference (VTC) 2004 2181 2184Wu Z Wu J Cross-layer routing optimization for video transmission over wireless ad hoc networks 6th International Conference on Wireless Communications Networks and Mobile Computing (WiCOM) 2010 1 6Schier, M., & Welzl, M. (2012). Optimizing Selective ARQ for H.264 Live Streaming: A Novel Method for Predicting Loss-Impact in Real Time. IEEE Transactions on Multimedia, 14(2), 415-430. doi:10.1109/tmm.2011.2178235Nikoupour M Nikoupour A Dehghan M A cross-layer framework for video streaming over wireless ad-hoc networks 3rd International Conference on Digital Information Management (ICDIM) 2008 340 345Yamamoto R Miyoshi T Distributed retransmission method using neighbor terminals for ad hoc networks Proceedings of the 14th Asia-Pacific Conference on Communications (APCC) 2008 1 5Gravalos I Kokkinos P Varvarigos EA Multi-criteria cooperative energy-aware routing in wireless ad-hoc networks Proceedings of the 9th International Wireless Communications and Mobile Computing Conference (IWCMC) 2013 387 393Abid, R. M., Benbrahim, T., & Biaz, S. (2010). IEEE 802.11s Wireless Mesh Networks for Last-Mile Internet Access: An Open-Source Real-World Indoor Testbed Implementation. Wireless Sensor Network, 02(10), 725-738. doi:10.4236/wsn.2010.210088Yen, Y.-S., Chang, R.-S., & Wu, C.-Y. (2011). A seamless handoff scheme for IEEE 802.11 wireless networks. Wireless Communications and Mobile Computing, 13(2), 157-169. doi:10.1002/wcm.1102Liangzhong Yin, & Guohong Cao. (2006). Supporting cooperative caching in ad hoc networks. IEEE Transactions on Mobile Computing, 5(1), 77-89. doi:10.1109/tmc.2006.15Biswas S Morris R ExOR: opportunistic multi-hop routing for wireless networks Proceedings of ACM SIGCOMM 2005 133 144Chachulski S Jennings M Katti S Katabi D Trading structure for randomness in wireless opportunistic routing Proceedings of ACM SIGCOMM 2007 169 180Kohler E Handley M Floyd S Datagram Congestion Control Protocol (DCCP), IETF RFC 4340 2006 http://www.rfc-editor.org/rfc/rfc4340.txtSchierl, T., Ganger, K., Hellge, C., Wiegand, T., & Stockhammer, T. (2006). SVC-based multisource streaming for robust video transmission in mobile ad hoc networks. IEEE Wireless Communications, 13(5), 96-103. doi:10.1109/wc-m.2006.250365Iera, A., Molinaro, A., Paratore, S. Y., Ruggeri, G., & Zurzolo, A. (2011). Making a mesh router/gateway from a smartphone: Is that a practical solution? Ad Hoc Networks, 9(8), 1414-1429. doi:10.1016/j.adhoc.2011.03.00

    A case for cross layer design: the impact of physical layer properties on routing protocol performance in MANETs

    Full text link
    In this work we evaluate the performance of routing protocols for mobile ad hoc networks using different physical layer models. The results obtained show that the performance results obtained using idealized models such as the free space propagation model vary significantly when propagation effects such as path loss and shadowing are considered. This difference in performance indicates that optimization is required in the protocol development space that takes into account channel state information (CSI). Such an optimization requires a cross layer approach to be adopted and a framework for protocol performance evaluation to be established. We believe that this work would serve as a first step in this direction. We provide comparative performance results through network simulations.<br /

    Cross-layer Congestion Control, Routing and Scheduling Design in Ad Hoc Wireless Networks

    Get PDF
    This paper considers jointly optimal design of crosslayer congestion control, routing and scheduling for ad hoc wireless networks. We first formulate the rate constraint and scheduling constraint using multicommodity flow variables, and formulate resource allocation in networks with fixed wireless channels (or single-rate wireless devices that can mask channel variations) as a utility maximization problem with these constraints. By dual decomposition, the resource allocation problem naturally decomposes into three subproblems: congestion control, routing and scheduling that interact through congestion price. The global convergence property of this algorithm is proved. We next extend the dual algorithm to handle networks with timevarying channels and adaptive multi-rate devices. The stability of the resulting system is established, and its performance is characterized with respect to an ideal reference system which has the best feasible rate region at link layer. We then generalize the aforementioned results to a general model of queueing network served by a set of interdependent parallel servers with time-varying service capabilities, which models many design problems in communication networks. We show that for a general convex optimization problem where a subset of variables lie in a polytope and the rest in a convex set, the dual-based algorithm remains stable and optimal when the constraint set is modulated by an irreducible finite-state Markov chain. This paper thus presents a step toward a systematic way to carry out cross-layer design in the framework of “layering as optimization decomposition” for time-varying channel models

    Multi-Objective Cross-Layer Optimization for Selection of Cooperative Path Pairs in Multihop Wireless Ad hoc Networks

    Get PDF
    This paper focuses in the selection of an optimal path pair for cooperative diversity based on cross-layer optimization in multihop wireless ad hoc networks. Cross-layer performance indicators, including power consumption, signal-to-noise ratio, and load variance are optimized using multi-objective optimization (MOO) with Pareto method. Consequently, optimization can be performed simultaneously to obtain a compromise among three resources over all possible path pairs. The Pareto method is further compared to the scalarization method in achieving fairness to each resource. We examine the statistics of power consumption, SNR, and load variance for both methods through simulations. In addition, the complexity of the optimization of both methods is evaluated based on the required computing time

    Buffering Technique for Optimizing Energy Consumption in the Transmission of MultimediaTraffic in Ad-Hoc Networks

    Full text link
    Energy constraints on wireless nodes represent a current field of research. Such restrictions are particularly significant because of the great amount of features and applications currently available on devices, which contribute to dramatically increase energy consumption. However, when transmitting delay-sensitive data, such as multimedia streaming, a balance between energy optimization and quality of service is required. In this sense, there are many works that address this issue from different layers of network architecture separately; however, a more efficient solution could be achieved by combining the management capabilities of the different layers and the joint use of such information, which is called a crosslayer mechanism. Moreover, despite the fact that the IEEE 802.11 standard defines an energy management mechanism at MAC level, it is envisaged only for structured networks, leaving just general guidelines for other kind of networks, such as Ad- Hoc networks. Therefore, as a first step towards the design of a cross-layer scheme, this paper analyzes the flaws of IEEE 802.11 standard as regards the infrastructureless mode and proposes an optimization mechanism for energy management in Ad-Hoc networks. The proposed approach is based on a buffering mechanism, which is able to increase power-saving periods of time in Ad-Hoc nodes. Simulations using NS3 indicate that it is possible to obtain higher levels of residual energy at the end of a transmission using the proposed scheme.Gonzalez, S.; Arce Vila, P.; Guerri Cebollada, JC. (2015). Buffering Technique for Optimizing Energy Consumption in the Transmission of MultimediaTraffic in Ad-Hoc Networks. IEEE Latin America Transactions. 13(1):250-258. doi:10.1109/TLA.2015.7040655S25025813

    Advanced PHY/MAC Design for Infrastructure-less Wireless Networks

    Get PDF
    Wireless networks play a key role in providing information exchange among distributed mobile devices. Nowadays, Infrastructure-Less Wireless Networks (ILWNs), which include ad hoc and sensor networks, are gaining increasing popularity as they do not need a fixed infrastructure. Simultaneously, multiple research initiatives have led to different findings at the physical (PHY) layer of the wireless communication systems, which can effectively be adopted in ILWNs. However, the distributed nature of ILWNs demand for different network control policies that should have into account the most recent findings to increase the network performance. This thesis investigates the adoption of Multi-Packet Reception (MPR) techniques at the PHY layer of distributed wireless networks, which is itself a challenging task due to the lack of a central coordinator and the spatial distribution of the nodes. The work starts with the derivation of an MPR system performance model that allows to determine optimal points of operation for different radio conditions. The model developed and validated in this thesis is then used to study the performance of ILWNs in high density of transmitters and when the spectrum can be sensed a priori (i.e. before each transmission). Based on the theoretical analysis developed in the thesis, we show that depending on the propagation conditions the spectrum sensing can reduce the network throughput to a level where its use should be avoided. At the final stage, we propose a crosslayered architecture that improves the capacity of an ILWN. Different Medium Access Control (MAC) schemes for ILWNs adopting MPR communications are proposed and their performance is theoretically characterized. We propose a cross-layer optimization methodology that considers the features of the MPR communication scheme together with the MAC performance. The proposed cross-layer optimization methodology improves the throughput of ILWNs, which is validated through theoretical analysis and multiple simulation results

    On Energy Efficient Hierarchical Cross-Layer Design: Joint Power Control and Routing for Ad Hoc Networks

    Full text link
    In this paper, a hierarchical cross-layer design approach is proposed to increase energy efficiency in ad hoc networks through joint adaptation of nodes' transmitting powers and route selection. The design maintains the advantages of the classic OSI model, while accounting for the cross-coupling between layers, through information sharing. The proposed joint power control and routing algorithm is shown to increase significantly the overall energy efficiency of the network, at the expense of a moderate increase in complexity. Performance enhancement of the joint design using multiuser detection is also investigated, and it is shown that the use of multiuser detection can increase the capacity of the ad hoc network significantly for a given level of energy consumption.Comment: To appear in the EURASIP Journal on Wireless Communications and Networking, Special Issue on Wireless Mobile Ad Hoc Network
    corecore