108 research outputs found

    Approximate Computing Survey, Part II: Application-Specific & Architectural Approximation Techniques and Applications

    Full text link
    The challenging deployment of compute-intensive applications from domains such Artificial Intelligence (AI) and Digital Signal Processing (DSP), forces the community of computing systems to explore new design approaches. Approximate Computing appears as an emerging solution, allowing to tune the quality of results in the design of a system in order to improve the energy efficiency and/or performance. This radical paradigm shift has attracted interest from both academia and industry, resulting in significant research on approximation techniques and methodologies at different design layers (from system down to integrated circuits). Motivated by the wide appeal of Approximate Computing over the last 10 years, we conduct a two-part survey to cover key aspects (e.g., terminology and applications) and review the state-of-the art approximation techniques from all layers of the traditional computing stack. In Part II of our survey, we classify and present the technical details of application-specific and architectural approximation techniques, which both target the design of resource-efficient processors/accelerators & systems. Moreover, we present a detailed analysis of the application spectrum of Approximate Computing and discuss open challenges and future directions.Comment: Under Review at ACM Computing Survey

    X-Rel: Energy-Efficient and Low-Overhead Approximate Reliability Framework for Error-Tolerant Applications Deployed in Critical Systems

    Full text link
    Triple Modular Redundancy (TMR) is one of the most common techniques in fault-tolerant systems, in which the output is determined by a majority voter. However, the design diversity of replicated modules and/or soft errors that are more likely to happen in the nanoscale era may affect the majority voting scheme. Besides, the significant overheads of the TMR scheme may limit its usage in energy consumption and area-constrained critical systems. However, for most inherently error-resilient applications such as image processing and vision deployed in critical systems (like autonomous vehicles and robotics), achieving a given level of reliability has more priority than precise results. Therefore, these applications can benefit from the approximate computing paradigm to achieve higher energy efficiency and a lower area. This paper proposes an energy-efficient approximate reliability (X-Rel) framework to overcome the aforementioned challenges of the TMR systems and get the full potential of approximate computing without sacrificing the desired reliability constraint and output quality. The X-Rel framework relies on relaxing the precision of the voter based on a systematical error bounding method that leverages user-defined quality and reliability constraints. Afterward, the size of the achieved voter is used to approximate the TMR modules such that the overall area and energy consumption are minimized. The effectiveness of employing the proposed X-Rel technique in a TMR structure, for different quality constraints as well as with various reliability bounds are evaluated in a 15-nm FinFET technology. The results of the X-Rel voter show delay, area, and energy consumption reductions of up to 86%, 87%, and 98%, respectively, when compared to those of the state-of-the-art approximate TMR voters.Comment: This paper has been published in IEEE Transactions on Very Large Scale Integration (VLSI) System

    Approximate Computing Survey, Part I: Terminology and Software & Hardware Approximation Techniques

    Full text link
    The rapid growth of demanding applications in domains applying multimedia processing and machine learning has marked a new era for edge and cloud computing. These applications involve massive data and compute-intensive tasks, and thus, typical computing paradigms in embedded systems and data centers are stressed to meet the worldwide demand for high performance. Concurrently, the landscape of the semiconductor field in the last 15 years has constituted power as a first-class design concern. As a result, the community of computing systems is forced to find alternative design approaches to facilitate high-performance and/or power-efficient computing. Among the examined solutions, Approximate Computing has attracted an ever-increasing interest, with research works applying approximations across the entire traditional computing stack, i.e., at software, hardware, and architectural levels. Over the last decade, there is a plethora of approximation techniques in software (programs, frameworks, compilers, runtimes, languages), hardware (circuits, accelerators), and architectures (processors, memories). The current article is Part I of our comprehensive survey on Approximate Computing, and it reviews its motivation, terminology and principles, as well it classifies and presents the technical details of the state-of-the-art software and hardware approximation techniques.Comment: Under Review at ACM Computing Survey

    Exploiting Adaptive Techniques to Improve Processor Energy Efficiency

    Get PDF
    Rapid device-miniaturization keeps on inducing challenges in building energy efficient microprocessors. As the size of the transistors continuously decreasing, more uncertainties emerge in their operations. On the other hand, integrating more and more transistors on a single chip accentuates the need to lower its supply-voltage. This dissertation investigates one of the primary device uncertainties - timing error, in microprocessor performance bottleneck in NTC era. Then it proposes various innovative techniques to exploit these opportunities to maintain processor energy efficiency, in the context of emerging challenges. Evaluated with the cross-layer methodology, the proposed approaches achieve substantial improvements in processor energy efficiency, compared to other start-of-art techniques

    Cost-Driven Hardware-Software Co-Optimization of Machine Learning Pipelines

    Full text link
    Researchers have long touted a vision of the future enabled by a proliferation of internet-of-things devices, including smart sensors, homes, and cities. Increasingly, embedding intelligence in such devices involves the use of deep neural networks. However, their storage and processing requirements make them prohibitive for cheap, off-the-shelf platforms. Overcoming those requirements is necessary for enabling widely-applicable smart devices. While many ways of making models smaller and more efficient have been developed, there is a lack of understanding of which ones are best suited for particular scenarios. More importantly for edge platforms, those choices cannot be analyzed in isolation from cost and user experience. In this work, we holistically explore how quantization, model scaling, and multi-modality interact with system components such as memory, sensors, and processors. We perform this hardware/software co-design from the cost, latency, and user-experience perspective, and develop a set of guidelines for optimal system design and model deployment for the most cost-constrained platforms. We demonstrate our approach using an end-to-end, on-device, biometric user authentication system using a $20 ESP-EYE board

    Circuit Techniques for Adaptive and Reliable High Performance Computing.

    Full text link
    Increasing power density with process scaling has caused stagnation in the clock speed of modern microprocessors. Accordingly, designers have adopted message passing and shared memory based multicore architectures in order to keep up with the rapidly rising demand for computing throughput. At the same time, applications are not entirely parallel and improving single-thread performance continues to remain critical. Additionally, reliability is also worsening with process scaling, and margining for failures due to process and environmental variations in modern technologies consumes an increasingly large portion of the power/performance envelope. In the wake of multicore computing, reliability of signal synchronization between the cores is also becoming increasingly critical. This forces designers to search for alternate efficient methods to improve compute performance while addressing reliability. Accordingly, this dissertation presents innovative circuit and architectural techniques for variation-tolerance, performance and reliability targeted at datapath logic, signal synchronization and memories. Firstly, a domino logic based design style for datapath logic is presented that uses Adaptive Robustness Tuning (ART) in addition to timing speculation to provide up to 71% performance gains over conventional domino logic in 32bx32b multiplier in 65nm CMOS. Margins are reduced until functionality errors are detected, that are used to guide the tuning. Secondly, for signal synchronization across clock domains, a new class of dynamic logic based synchronizers with single-cycle synchronization latency is presented, where pulses, rather than stable intermediate voltages cause metastability. Such pulses are amplified using skewed inverters to improve mean time between failures by ~1e6x over jamb latches and double flip-flops at 2GHz in 65nm CMOS. Thirdly, a reconfigurable sensing scheme for 6T SRAMs is presented that employs auto-zero calibration and pre-amplification to improve sensing reliability (by up to 1.2 standard deviations of NMOS threshold voltage in 28nm CMOS); this increased reliability is in turn traded for ~42% sensing speedup. Finally, a main memory architecture design methodology to address reliability and power in the context of Exascale computing systems is presented. Based on 3D-stacked DRAMs, the methodology co-optimizes DRAM access energy, refresh power and the increased cost of error resilience, to meet stringent power and reliability constraints.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/107238/1/bharan_1.pd
    corecore