282 research outputs found

    Efficiency and Accuracy Enhancement of Intrusion Detection System Using Feature Selection and Cross-layer Mechanism

    Get PDF
    The dramatic increase in the number of connected devices and the significant growth of the network traffic data have led to many security vulnerabilities and cyber-attacks. Hence, developing new methods to secure the network infrastructure and protect data from malicious and unauthorized access becomes a vital aspect of communication network design. Intrusion Detection Systems (IDSs), as common widely used security techniques, are critical to detect network attacks and unauthorized network access and thus minimize further cyber-attack damages. However, there are a number of weaknesses that need to be addressed to make reliable IDS for real-world applications. One of the fundamental challenges is the large number of redundant and non-relevant data. Feature selection emerges as a necessary step in efficient IDS design to overcome high dimensionality problem and enhance the performance of IDS through the reduction of its complexity and the acceleration of the detection process. Moreover, detection algorithm has significant impact on the performance of IDS. Machine learning techniques are widely used in such systems which is studied in details in this dissertation. One of the most destructive activities in wireless networks such as MANET is packet dropping. The existence of the intrusive attackers in the network is not the only cause of packet loss. In fact, packet drop can occur because of faulty network. Hence, in order detect the packet dropping caused by a malicious activity of an attacker, information from various layers of the protocol is needed to detect malicious packet loss effectively. To this end, a novel cross-layer design for malicious packet loss detection in MANET is proposed using features from physical layer, network layer and MAC layer to make a better detection decision. Trust-based mechanism is adopted in this design and a packet loss free routing algorithm is presented accordingly

    Two-tier Intrusion Detection System for Mobile Ad Hoc Networks

    Get PDF
    Nowadays, a commonly used wireless network (i.e. Wi-Fi) operates with the aid of a fixed infrastructure (i.e. an access point) to facilitate communication between nodes when they roam from one location to another. The need for such a fixed supporting infrastructure limits the adaptability of the wireless network, especially in situations where the deployment of such an infrastructure is impractical. In addition, Wi-Fi limits nodes' communication as it only provides facility for mobile nodes to send and receive information, but not reroute the information across the network. Recent advancements in computer network introduced a new wireless network, known as a Mobile Ad Hoc Network (MANET), to overcome these limitations. MANET has a set of unique characteristics that make it different from other kind of wireless networks. Often referred as a peer to peer network, such a network does not have any fixed topology, thus nodes are free to roam anywhere, and could join or leave the network anytime they desire. Its ability to be setup without the need of any infrastructure is very useful, especially in geographically constrained environments such as in a military battlefield or a disaster relief operation. In addition, through its multi hop routing facility, each node could function as a router, thus communication between nodes could be made available without the need of a supporting fixed router or an access point. However, these handy facilities come with big challenges, especially in dealing with the security issues. This research aims to address MANET security issues by proposing a novel intrusion detection system that could be used to complement existing prevention mechanisms that have been proposed to secure such a network. A comprehensive analysis of attacks and the existing security measures proved that there is a need for an Intrusion Detection System (IDS) to protect MANETs against security threats. The analysis also suggested that the existing IDS proposed for MANET are not immune against a colluding blackmail attack due to the nature of such a network that comprises autonomous and anonymous nodes. The IDS architecture as proposed in this study utilises trust relationships between nodes to overcome this nodes' anonymity issue. Through a friendship mechanism, the problems of false accusations and false alarms caused by blackmail attackers in global detection and response mechanisms could be eliminated. The applicability of the friendship concept as well as other proposed mechanisms to solve MANET IDS related issues have been validated through a set of simulation experiments. Several MANET settings, which differ from each other based on the network's density level, the number of initial trusted friends owned by each node, and the duration of the simulation times, have been used to study the effects of such factors towards the overall performance of the proposed IDS framework. The results obtained from the experiments proved that the proposed concepts are capable to at least minimise i f not fully eliminate the problem currently faced in MANET IDS

    Algorithms based on spider daddy long legs for finding the optimal route in securing mobile ad hoc networks

    Get PDF
    Mobile ad hoc networks (MANETs) are wireless networks that are subject to severe attacks, such as the black hole attack. One of the goals in the research is to find a method to prevent black hole attacks without decreasing network throughput or increasing routing overhead. The routing mechanism in define uses route requests (RREQs; for discovering routes) and route replies (RREPs; for receiving paths). However, this mechanism is vulnerable to attacks by malicious black hole nodes. The mechanism is developed to find the shortest secure path and to reduce overhead using the information that is available in the routing tables as an input to propose a more complex nature-inspired algorithm. The new method is called the Daddy Long-Legs Algorithm (PGO-DLLA), which modifies the standard AODV and optimizes the routing process. This method avoids dependency exclusively on the hop counts and destination sequence numbers (DSNs) that are exploited by malicious nodes in the standard AODV protocol. The experiment by performance metrics End-to-End delay and packet delivery ratio are compared in order to determine the best effort traffic. The results showed the PGO-DLLA improvement of the shortest and secure routing from black hole attack in MANET. In addition, the results indicate better performance than the related works algorithm with respect to all metrics excluding throughput which AntNet is best in routing when the pause time be more than 40 seconds. PGODLLA is able to improve the route discovery against the black hole attacks in AODV. Experiments in this thesis have shown that PGO-DLLA is able to reduce the normalized routing load, end-to-end delay, and packet loss and has a good throughput and packet delivery ratio when compared with the standard AODV protocol, BAODV protocol, and the current related protocols that enhance the routing security of the AODV protocols

    A Novel Cooperative Intrusion Detection System for Mobile Ad Hoc Networks

    Get PDF
    Mobile ad hoc networks (MANETs) have experienced rapid growth in their use for various military, medical, and commercial scenarios. This is due to their dynamic nature that enables the deployment of such networks, in any target environment, without the need for a pre-existing infrastructure. On the other hand, the unique characteristics of MANETs, such as the lack of central networking points, limited wireless range, and constrained resources, have made the quest for securing such networks a challenging task. A large number of studies have focused on intrusion detection systems (IDSs) as a solid line of defense against various attacks targeting the vulnerable nature of MANETs. Since cooperation between nodes is mandatory to detect complex attacks in real time, various solutions have been proposed to provide cooperative IDSs (CIDSs) in efforts to improve detection efficiency. However, all of these solutions suffer from high rates of false alarms, and they violate the constrained-bandwidth nature of MANETs. To overcome these two problems, this research presented a novel CIDS utilizing the concept of social communities and the Dempster-Shafer theory (DST) of evidence. The concept of social communities was intended to establish reliable cooperative detection reporting while consuming minimal bandwidth. On the other hand, DST targeted decreasing false accusations through honoring partial/lack of evidence obtained solely from reliable sources. Experimental evaluation of the proposed CIDS resulted in consistently high detection rates, low false alarms rates, and low bandwidth consumption. The results of this research demonstrated the viability of applying the social communities concept combined with DST in achieving high detection accuracy and minimized bandwidth consumption throughout the detection process

    Intrusion detection and response model for mobile ad hoc networks.

    Get PDF
    This dissertation presents a research whose objective is to design and develop an intrusion detection and response model for Mobile Ad hoc NETworks (MANET). Mobile ad hoc networks are infrastructure-free, pervasive and ubiquitous in nature, without any centralized authority. These unique MANET characteristics present several changes to secure them. The proposed security model is called the Intrusion Detection and Response for Mobile Ad hoc Networks (IDRMAN). The goal of the proposed model is to provide a security framework that will detect various attacks and take appropriate measures to control the attack automatically. This model is based on identifying critical system parameters of a MANET that are affected by various types of attacks, and continuously monitoring the values of these parameters to detect and respond to attacks. This dissertation explains the design and development of the detection framework and the response framework of the IDRMAN. The main aspects of the detection framework are data mining using CART to identify attack sensitive network parameters from the wealth of raw network data, statistical processing using six sigma to identify the thresholds for the attack sensitive parameters and quantification of the MANET node state through a measure called the Threat Index (TI) using fuzzy logic methodology. The main aspects of the response framework are intruder identification and intruder isolation through response action plans. The effectiveness of the detection and response framework is mathematically analyzed using probability techniques. The detection framework is also evaluated by performance comparison experiments with related models, and through performance evaluation experiments from scalability perspective. Performance metrics used for assessing the detection aspect of the proposed model are detection rate and false positive rate at different node mobility speed. Performance evaluation experiments for scalability are with respect to the size of the MANET, where more and more mobile nodes are added into the MANET at varied mobility speed. The results of both the mathematical analysis and the performance evaluation experiments demonstrate that the IDRMAN model is an effective and viable security model for MANET

    A Comprehensive Survey on Routing and Security in Mobile Wireless Sensor Networks

    Get PDF
    With the continuous advances in mobile wirelesssensor networks (MWSNs), the research community hasresponded to the challenges and constraints in the design of thesenetworks by proposing efficient routing protocols that focus onparticular performance metrics such as residual energy utilization,mobility, topology, scalability, localization, data collection routing,Quality of Service (QoS), etc. In addition, the introduction ofmobility in WSN has brought new challenges for the routing,stability, security, and reliability of WSNs. Therefore, in thisarticle, we present a comprehensive and meticulous investigationin the routing protocols and security challenges in the theory ofMWSNs which was developed in recent years

    A Survey in Wireless Ad hoc Network Security and Secure Energy Optimization Approaches for Routing

    Get PDF
    Wireless ad hoc network nodes together establish a network infrastructure without using any access points or base stations for communicates using multi hop schemes. It has significant characteristics like dynamic topologies, constrained in bandwidth and limited resource a high challenge in implementing security with optimized energy resource utilization which is the key aspects while designing modern ad hoc networks architecture. Ad hoc Networks nodes are limited in broadcast range, and also their capabilities of computation and storage are well limited to their energy resources. This limitation of resources in wireless ad hoc creates high challenges in incorporating security mechanism for routing security and privacy maintenance. This paper investigates the various issues and challenges in secure routing and energy optimization during communication in wireless ad hoc network towards security and secure energy utilization improvisation

    Synoptic analysis techniques for intrusion detection in wireless networks

    Get PDF
    Current system administrators are missing intrusion alerts hidden by large numbers of false positives. Rather than accumulation more data to identify true alerts, we propose an intrusion detection tool that e?ectively uses select data to provide a picture of ?network health?. Our hypothesis is that by utilizing the data available at both the node and cooperative network levels we can create a synoptic picture of the network providing indications of many intrusions or other network issues. Our major contribution is to provide a revolutionary way to analyze node and network data for patterns, dependence, and e?ects that indicate network issues. We collect node and network data, combine and manipulate it, and tease out information about the state of the network. We present a method based on utilizing the number of packets sent, number of packets received, node reliability, route reliability, and entropy to develop a synoptic picture of the network health in the presence of a sinkhole and a HELLO Flood attacker. This method conserves network throughput and node energy by requiring no additional control messages to be sent between the nodes unless an attacker is suspected. We intend to show that, although the concept of an intrusion detection system is not revolutionary, the method in which we analyze the data for clues about network intrusion and performance is highly innovative

    Improving Multicast Communications Over Wireless Mesh Networks

    Get PDF
    In wireless mesh networks (WMNs) the traditional approach to shortest path tree based multicasting is to cater for the needs of the poorest performingnode i.e. the maximum permitted multicast line rate is limited to the lowest line rate used by the individual Child nodes on a branch. In general, this meansfixing the line rate to its minimum value and fixing the transmit power to its maximum permitted value. This simplistic approach of applying a single multicast rate for all nodes in the multicast group results in a sub-optimal trade-off between the mean network throughput and coverage area that does not allow for high bandwidth multimedia applications to be supported. By relaxing this constraint and allowing multiple line rates to be used, the mean network throughput can be improved. This thesis presents two methods that aim to increase the mean network throughput through the use of multiple line rates by the forwarding nodes. This is achieved by identifying the Child nodes responsible for reducing the multicast group rate. The first method identifies specific locations for the placement of relay nodes which allows for higher multicast branch line rates to be used. The second method uses a power control algorithm to tune the transmit power to allow for higher multicast branch line rates. The use of power control also helps to reduce the interference caused to neighbouring nodes.Through extensive computer simulation it can be shown that these two methods can lead to a four-fold gain in the mean network throughput undertypical WMN operating conditions compared with the single line rate case
    • …
    corecore