174 research outputs found

    An Overview of QoS Enhancements for Wireless Vehicular Networks

    Get PDF
    Vehicular ad hoc networks (VANETs) allow vehicles to form a self-organized network without the need for permanent infrastructure. Even though VANETs are mobile ad hoc networks (MANETs), because of the intrinsic characteristics of VANETs, several protocols designed for MANETs cannot be directly applied for VANETs. With high number of nodes and mobility, ensuring the Quality of Service (QoS) in VANET is a challenging task. QoS is essential to improve the communication efficiency in vehicular networks. Thus a study of QoS in VANET is useful as a fundamental for constructing an effective vehicular network. In this paper, we present a timeline of the development of the existing protocols for VANETs that try to support QoS. Moreover, we classify and characterize the existing QoS protocols for VANETs in a layered perspective. The review helps in understanding the strengths and weaknesses of the existing QoS protocols and also throws light on open issues that remain to be addressed. Keywords: QoS, VANET, Inter-Vehicle Communications, MAC, Routin

    Cross-layer optimizations in multi-hop ad hoc networks

    Get PDF
    Unlike traditional wireless networks, characterized by the presence of last-mile, static and reliable infrastructures, Mobile ad Hoc Networks (MANETs) are dynamically formed by collections of mobile and static terminals that exchange data by enabling each other's communication. Supporting multi-hop communication in a MANET is a challenging research area because it requires cooperation between different protocol layers (MAC, routing, transport). In particular, MAC and routing protocols could be considered mutually cooperative protocol layers. When a route is established, the exposed and hidden terminal problems at MAC layer may decrease the end-to-end performance proportionally with the length of each route. Conversely, the contention at MAC layer may cause a routing protocol to respond by initiating new routes queries and routing table updates. Multi-hop communication may also benefit the presence of pseudo-centralized virtual infrastructures obtained by grouping nodes into clusters. Clustering structures may facilitate the spatial reuse of resources by increasing the system capacity: at the same time, the clustering hierarchy may be used to coordinate transmissions events inside the network and to support intra-cluster routing schemes. Again, MAC and clustering protocols could be considered mutually cooperative protocol layers: the clustering scheme could support MAC layer coordination among nodes, by shifting the distributed MAC paradigm towards a pseudo-centralized MAC paradigm. On the other hand, the system benefits of the clustering scheme could be emphasized by the pseudo-centralized MAC layer with the support for differentiated access priorities and controlled contention. In this thesis, we propose cross-layer solutions involving joint design of MAC, clustering and routing protocols in MANETs. As main contribution, we study and analyze the integration of MAC and clustering schemes to support multi-hop communication in large-scale ad hoc networks. A novel clustering protocol, named Availability Clustering (AC), is defined under general nodes' heterogeneity assumptions in terms of connectivity, available energy and relative mobility. On this basis, we design and analyze a distributed and adaptive MAC protocol, named Differentiated Distributed Coordination Function (DDCF), whose focus is to implement adaptive access differentiation based on the node roles, which have been assigned by the upper-layer's clustering scheme. We extensively simulate the proposed clustering scheme by showing its effectiveness in dominating the network dynamics, under some stressing mobility models and different mobility rates. Based on these results, we propose a possible application of the cross-layer MAC+Clustering scheme to support the fast propagation of alert messages in a vehicular environment. At the same time, we investigate the integration of MAC and routing protocols in large scale multi-hop ad-hoc networks. A novel multipath routing scheme is proposed, by extending the AOMDV protocol with a novel load-balancing approach to concurrently distribute the traffic among the multiple paths. We also study the composition effect of a IEEE 802.11-based enhanced MAC forwarding mechanism called Fast Forward (FF), used to reduce the effects of self-contention among frames at the MAC layer. The protocol framework is modelled and extensively simulated for a large set of metrics and scenarios. For both the schemes, the simulation results reveal the benefits of the cross-layer MAC+routing and MAC+clustering approaches over single-layer solutions

    Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks

    Get PDF
    This book presents collective works published in the recent Special Issue (SI) entitled "Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks”. These works expose the readership to the latest solutions and techniques for MANETs and VANETs. They cover interesting topics such as power-aware optimization solutions for MANETs, data dissemination in VANETs, adaptive multi-hop broadcast schemes for VANETs, multi-metric routing protocols for VANETs, and incentive mechanisms to encourage the distribution of information in VANETs. The book demonstrates pioneering work in these fields, investigates novel solutions and methods, and discusses future trends in these field

    Achieving reliable and enhanced communication in vehicular ad hoc networks (VANETs)

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirement for the degree of Doctor of PhilosophyWith the envisioned age of Internet of Things (IoTs), different aspects of Intelligent Transportation System (ITS) will be linked so as to advance road transportation safety, ease congestion of road traffic, lessen air pollution, improve passenger transportation comfort and significantly reduce road accidents. In vehicular networks, regular exchange of current position, direction, speed, etc., enable mobile vehicle to foresee an imminent vehicle accident and notify the driver early enough in order to take appropriate action(s) or the vehicle on its own may take adequate preventive measures to avert the looming accident. Actualizing this concept requires use of shared media access protocol that is capable of guaranteeing reliable and timely broadcast of safety messages. This dissertation investigates the use of Network Coding (NC) techniques to enrich the content of each transmission and ensure improved high reliability of the broadcasted safety messages with less number of retransmissions. A Code Aided Retransmission-based Error Recovery (CARER) protocol is proposed. In order to avoid broadcast storm problem, a rebroadcasting vehicle selection metric η, is developed, which is used to select a vehicle that will rebroadcast the received encoded message. Although the proposed CARER protocol demonstrates an impressive performance, the level of incurred overhead is fairly high due to the use of complex rebroadcasting vehicle selection metric. To resolve this issue, a Random Network Coding (RNC) and vehicle clustering based vehicular communication scheme with low algorithmic complexity, named Reliable and Enhanced Cooperative Cross-layer MAC (RECMAC) scheme, is proposed. The use of this clustering technique enables RECMAC to subdivide the vehicular network into small manageable, coordinated clusters which further improve transmission reliability and minimise negative impact of network overhead. Similarly, a Cluster Head (CH) selection metric ℱ(\u1d457) is designed, which is used to determine and select the most suitably qualified candidate to become the CH of a particular cluster. Finally, in order to investigate the impact of available radio spectral resource, an in-depth study of the required amount of spectrum sufficient to support high transmission reliability and minimum latency requirements of critical road safety messages in vehicular networks was carried out. The performance of the proposed schemes was clearly shown with detailed theoretical analysis and was further validated with simulation experiments

    TDMA Slot Reservation in Cluster-Based VANETs

    Get PDF
    Vehicular Ad Hoc Networks (VANETs) are a form of Mobile Ad Hoc Networks (MANETs) in which vehicles on the road form the nodes of the network. VANETs provide several services to enhance the safety and comfort of drivers and passengers. These services can be obtained by the wireless exchange of information among the vehicles driving on the road. In particular, the transmission of two different types of messages, safety/update and non-safety messages. The transmission of safety/update message aims to inform the nearby vehicles about the sender\u27s current status and/or a detected dangerous situation. This type of transmission is designed to help in accident and danger avoidance. Moreover, it requires high message generated rate and high reliability. On the other hand, the transmission of non-safety message aims to increase the comfort on vehicles by supporting several non-safety services, from notifications of traffic conditions to file sharing. Unfortunately, the transmission of non-safety message has less priority than safety messages, which may cause shutting down the comfort services. The goal of this dissertation is to design a MAC protocol in order to provide the ability of the transmission of non-safety message with little impact on the reliability of transmitting safety message even if the traffic and communication densities are high. VANET is a highly dynamic network. With lack of specialized hardware for infrastructure and the mobility to support network stability and channel utilization, acluster-based MAC protocol is needed to solve these overcomes. This dissertation makes the following contributions: 1. A multi-channel cluster-based TDMA MAC protocol to coordinate intracluster communications (TC-MAC) 2. A CH election and cluster formation algorithm based on the traffic flow and a cluster maintenance algorithm that benefits from our cluster formation algorithm 3. A multi-channel cluster-based CDNIA/TDMA hybrid MAC protocol to coordinate inter-cluster communications I will show that TC-MAC provides better performance than the current WAVE standard in terms of safety/update message reliability and non-safety message delivery. Additionally, I will show that my clustering and cluster maintenance protocol provides more stable clusters, which will reduce the overhead of clusterhead election and re-clustering and leads to an efficient hierarchical network topology

    A Comparative Survey of VANET Clustering Techniques

    Full text link
    © 2016 Crown. A vehicular ad hoc network (VANET) is a mobile ad hoc network in which network nodes are vehicles - most commonly road vehicles. VANETs present a unique range of challenges and opportunities for routing protocols due to the semi-organized nature of vehicular movements subject to the constraints of road geometry and rules, and the obstacles which limit physical connectivity in urban environments. In particular, the problems of routing protocol reliability and scalability across large urban VANETs are currently the subject of intense research. Clustering can be used to improve routing scalability and reliability in VANETs, as it results in the distributed formation of hierarchical network structures by grouping vehicles together based on correlated spatial distribution and relative velocity. In addition to the benefits to routing, these groups can serve as the foundation for accident or congestion detection, information dissemination and entertainment applications. This paper explores the design choices made in the development of clustering algorithms targeted at VANETs. It presents a taxonomy of the techniques applied to solve the problems of cluster head election, cluster affiliation, and cluster management, and identifies new directions and recent trends in the design of these algorithms. Additionally, methodologies for validating clustering performance are reviewed, and a key shortcoming - the lack of realistic vehicular channel modeling - is identified. The importance of a rigorous and standardized performance evaluation regime utilizing realistic vehicular channel models is demonstrated
    • …
    corecore