285 research outputs found

    On the Combination of Game-Theoretic Learning and Multi Model Adaptive Filters

    Get PDF
    This paper casts coordination of a team of robots within the framework of game theoretic learning algorithms. In particular a novel variant of fictitious play is proposed, by considering multi-model adaptive filters as a method to estimate other players’ strategies. The proposed algorithm can be used as a coordination mechanism between players when they should take decisions under uncertainty. Each player chooses an action after taking into account the actions of the other players and also the uncertainty. Uncertainty can occur either in terms of noisy observations or various types of other players. In addition, in contrast to other game-theoretic and heuristic algorithms for distributed optimisation, it is not necessary to find the optimal parameters a priori. Various parameter values can be used initially as inputs to different models. Therefore, the resulting decisions will be aggregate results of all the parameter values. Simulations are used to test the performance of the proposed methodology against other game-theoretic learning algorithms.</p

    Human-Machine Collaborative Optimization via Apprenticeship Scheduling

    Full text link
    Coordinating agents to complete a set of tasks with intercoupled temporal and resource constraints is computationally challenging, yet human domain experts can solve these difficult scheduling problems using paradigms learned through years of apprenticeship. A process for manually codifying this domain knowledge within a computational framework is necessary to scale beyond the ``single-expert, single-trainee" apprenticeship model. However, human domain experts often have difficulty describing their decision-making processes, causing the codification of this knowledge to become laborious. We propose a new approach for capturing domain-expert heuristics through a pairwise ranking formulation. Our approach is model-free and does not require enumerating or iterating through a large state space. We empirically demonstrate that this approach accurately learns multifaceted heuristics on a synthetic data set incorporating job-shop scheduling and vehicle routing problems, as well as on two real-world data sets consisting of demonstrations of experts solving a weapon-to-target assignment problem and a hospital resource allocation problem. We also demonstrate that policies learned from human scheduling demonstration via apprenticeship learning can substantially improve the efficiency of a branch-and-bound search for an optimal schedule. We employ this human-machine collaborative optimization technique on a variant of the weapon-to-target assignment problem. We demonstrate that this technique generates solutions substantially superior to those produced by human domain experts at a rate up to 9.5 times faster than an optimization approach and can be applied to optimally solve problems twice as complex as those solved by a human demonstrator.Comment: Portions of this paper were published in the Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI) in 2016 and in the Proceedings of Robotics: Science and Systems (RSS) in 2016. The paper consists of 50 pages with 11 figures and 4 table

    Fair collaborative vehicle routing: A deep multi-agent reinforcement learning approach

    Full text link
    Collaborative vehicle routing occurs when carriers collaborate through sharing their transportation requests and performing transportation requests on behalf of each other. This achieves economies of scale, thus reducing cost, greenhouse gas emissions and road congestion. But which carrier should partner with whom, and how much should each carrier be compensated? Traditional game theoretic solution concepts are expensive to calculate as the characteristic function scales exponentially with the number of agents. This would require solving the vehicle routing problem (NP-hard) an exponential number of times. We therefore propose to model this problem as a coalitional bargaining game solved using deep multi-agent reinforcement learning, where - crucially - agents are not given access to the characteristic function. Instead, we implicitly reason about the characteristic function; thus, when deployed in production, we only need to evaluate the expensive post-collaboration vehicle routing problem once. Our contribution is that we are the first to consider both the route allocation problem and gain sharing problem simultaneously - without access to the expensive characteristic function. Through decentralised machine learning, our agents bargain with each other and agree to outcomes that correlate well with the Shapley value - a fair profit allocation mechanism. Importantly, we are able to achieve a reduction in run-time of 88%.Comment: Final, published version can be found here: https://www.sciencedirect.com/science/article/pii/S0968090X2300366

    Combining Optimization and Machine Learning for the Formation of Collectives

    Get PDF
    This thesis considers the problem of forming collectives of agents for real-world applications aligned with Sustainable Development Goals (e.g., shared mobility and cooperative learning). Such problems require fast approaches that can produce solutions of high quality for hundreds of agents. With this goal in mind, existing solutions for the formation of collectives focus on enhancing the optimization approach by exploiting the characteristics of a domain. However, the resulting approaches rely on specific domain knowledge and are not transferable to other collective formation problems. Therefore, approaches that can be applied to various problems need to be studied in order to obtain general approaches that do not require prior knowledge of the domain. Along these lines, this thesis proposes a general approach for the formation of collectives based on a novel combination of machine learning and an \emph{Integer Linear Program}. More precisely, a machine learning component is trained to generate a set of promising collectives that are likely to be part of a solution. Then, such collectives and their corresponding utility values are introduced into an \emph{Integer Linear Program} which finds a solution to the collective formation problem. In that way, the machine learning component learns the structure shared by ``good'' collectives in a particular domain, making the whole approach valid for various applications. In addition, the empirical analysis conducted on two real-world domains (i.e., ridesharing and team formation) shows that the proposed approach provides solutions of comparable quality to state-of-the-art approaches specific to each domain. Finally, this thesis also shows that the proposed approach can be extended to problems that combine the formation of collectives with other optimization objectives. Thus, this thesis proposes an extension of the collective formation approach for assigning pickup and delivery locations to robots in a warehouse environment. The experimental evaluation shows that, although it is possible to use the collective formation approach for that purpose, several improvements are required to compete with state-of-the-art approaches. Overall, this thesis aims to demonstrate that machine learning can be successfully intertwined with classical optimization approaches for the formation of collectives by learning the structure of a domain, reducing the need for ad-hoc algorithms devised for a specific application

    Quantifying and Visualizing City Truck Route Network Efficiency Using a Virtual Testbed: Models for an Urban Freight and Parcel Delivery Virtual Testbed in NYC

    Get PDF
    69A3551747119This project explored routing app designs that can be of use to NYC DOT in informing truck drivers in NYC. This involved developing a prototype app and engaging in a hackathon in Fall 2022 to refine the visualization of the routing data. Second, we leveraged public data to construct a synthetic population of trucks that can be incorporated into a multiagent simulation that allows for dynamic passenger and commercial vehicle interactions. The synthetic truck population, which includes schedules of trip chains for each individual truck, will be incorporated into MATSim-NYC (He et al., 2021). Third, we proposed a new model for predicting zonal residential parcel delivery volumes and VMT that is applicable to large-scale scenarios and validate such a model using data from New York City (NYC)

    Data-driven prognostics and logistics optimisation:A deep learning journey

    Get PDF

    Data-driven prognostics and logistics optimisation:A deep learning journey

    Get PDF
    corecore