1,776 research outputs found

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    Network optimization in railway transport planning

    Get PDF
    This work is dealing with train timetabling problem. In the first chapter, one can find an introduction to network flows which is needed for understanding deeper concepts later on. Namely, basic graph theory definitions are stated as well as core problems like the minimum cost flow and shortest path problem. Furthermore, two equivalent representations of network flows are described, including some useful properties connected to each of them. At the end of the chapter, linear programming and simplex method are introduced into some detail. In the second chapter more complex theory is introduced. At the beginning, multi-commodity flow problem is stated and few solutions approaches are briefly described. Once we settled for one of them, the rest of the chapter is dealing with Lagrangian relaxation and column generation techniques. Since column generation is the main result needed for solving our problem, some finer results, like determining lower and upper bounds, are stated. In the last, third chapter, one can find a model for representing train timetabling problem for a single line network. That model was introduced by Valentina Cacchiani in her Ph.D. thesis. In this work, periodicity of timetable is assumed because it makes computations way quicker, as well as it has some other benefits. At the end, one can find an algorithm based on column generation technique for solving introduced model. That algorithm is based on 6 steps, and after reading this work, one should be able to fully understand each of them.Ovaj rad bavi se problemom rasporeda vožnje u željezničkom prometu. U prvom poglavlju nalazi se uvod u mrežne tokove koji je potreban za razumijevanje naprednijih koncepata. Konkretno, iskazane su osnovne definicije teorije grafova kao i neki temeljni problemi poput problema najjeftinijeg toka i problema najkraćeg puta. Nadalje, opisana su dva ekvivalenta prikaza mrežnih tokova, uključujući neka korisna svojstva za svaki od njih. Na kraju poglavlja, linearno programiranje i simpleks metoda, objašnjeni su na razini razumijevanja. U drugom poglavlju nalazi se naprednija teorija koja se nadovezuje na prvo poglavlje. Na početku poglavlja prikazan je problem više dobara, kao i nekoliko pristupa rješavanju navedenog problema. Nakon što smo se odlučili za jedan od pristupa, ostatak poglavlja bavi se Lagrangeovom relaksacijom i metodom generacije stupaca. Kako je upravo metoda generacije stupaca najvažniji rezultat za rješavanje našega problema, napredniji rezultati vezani uz određivanje donjih i gornjih granica su detaljno objasnjeni. U posljednjem, trećem poglavlju, nalazi se model za prikazivanje problema rasporeda vožnje za mreže s jednom tračnicom. Navedeni model prvi puta je predstavljen u doktorskom radu Valentine Cacchiani. U ovom radu također pretpostavljamo periodičnost rasporeda vožnje kako bismo, između ostalih, ostvarili prednost poput bržeg vremena računanja. Na kraju rada nalazi se algoritam, temeljen na metodi generacije stupaca, za rješavanje predstavljenog modela. Navedeni algoritam sastoji se od 6 koraka, od kojih je svaki detaljno opisan u ovome radu

    Doctor of Philosophy

    Get PDF
    dissertationThis dissertation aims to develop an innovative and improved paradigm for real-time large-scale traffic system estimation and mobility optimization. To fully utilize heterogeneous data sources in a complex spatial environment, this dissertation proposes an integrated and unified estimation-optimization framework capable of interpreting different types of traffic measurements into various decision-making processes. With a particular emphasis on the end-to-end travel time prediction problem, this dissertation proposes an information-theoretic sensor location model that aims to maximize information gains from a set of point, point-to-point and probe sensors in a traffic network. After thoroughly examining a number of possible measures of information gain, this dissertation selects a path travel time prediction uncertainty criterion to construct a joint sensor location and travel time estimation/prediction framework. To better measure the quality of service for ransportation systems, this dissertation investigates the path travel time reliability from two perspectives: variability and robustness. Based on calibrated travel disutility functions, the path travel time variability in this research is represented by its standard deviation in addition to the mean travel time. To handle the nonlinear and nonadditive cost functions introduced by the quadratic forms of the standard deviation term, a novel Lagrangian substitution approach is introduced to estimate the lower bound of the most reliable path solution through solving a sequence of standard shortest path problems. To recognize the asymmetrical and heavy-tailed travel time distributions, this dissertation proposes Lagrangian relaxation based iterative search algorithms for finding the absolute and percentile robust shortest paths. Moreover, this research develops a sampling-based method to dynamically construct a proxy objective function in terms of travel time observations from multiple days. Comprehensive numerical experiment results with real-world travel time measurements show that 10-20 iterations of standard shortest path algorithms for the reformulated models can offer a very small relative duality gap of about 2-6%, for both reliability measure models. This broadly-defined research has successfully addressed a number of theoretically challenging and practically important issues for building the next-generation Advanced Traveler Information Systems, and is expected to offer a rich foundation beneficial to the model and algorithmic development of sensor network design, traffic forecasting and personalized navigation

    Modelling urban floods using a finite element staggered scheme with an anisotropic dual porosity model

    Get PDF
    In porosity models for urban flooding, artificial porosity is used as a statistical descriptor of the urban medium. Buildings are treated as subgrid-scale features and, even with the use of relatively coarse grids, their effects on the flow are accounted for. Porosity models are attractive for large-scale applications due to limited computational demand with respect to solving the classical Shallow Water Equations on high-resolution grids. In the last decade, effective schemes have been developed that allowed accounting for a wealth of sub-grid processes; unfortunately, they are known to suffer from over-sensitivity to mesh design in the case of anisotropic porosity fields, which are typical of urban layouts. In the present study, a dual porosity approach is implemented into a two-dimensional Finite Element numerical scheme that uses a staggered unstructured mesh. The presence of buildings is modelled using an isotropic porosity in the continuity equation, to account for the reduced water storage, and a tensor formulation for conveyance porosity in the momentum equations, to account for anisotropy and effective flow velocity. The element-by-element definition of porosities, and the use of a staggered grid in which triangular cells convey fluxes and continuity is balanced at grid nodes, allow avoiding undesired mesh-dependency. Tested against refined numerical solutions and data from a laboratory experiment, the model provided satisfactory results. Model limitations are discussed in view of applications to more complex, real urban layouts

    Shared Mobility Optimization in Large Scale Transportation Networks: Methodology and Applications

    Get PDF
    abstract: Optimization of on-demand transportation systems and ride-sharing services involves solving a class of complex vehicle routing problems with pickup and delivery with time windows (VRPPDTW). Previous research has made a number of important contributions to the challenging pickup and delivery problem along different formulation or solution approaches. However, there are a number of modeling and algorithmic challenges for a large-scale deployment of a vehicle routing and scheduling algorithm, especially for regional networks with various road capacity and traffic delay constraints on freeway bottlenecks and signal timing on urban streets. The main thrust of this research is constructing hyper-networks to implicitly impose complicated constraints of a vehicle routing problem (VRP) into the model within the network construction. This research introduces a new methodology based on hyper-networks to solve the very important vehicle routing problem for the case of generic ride-sharing problem. Then, the idea of hyper-networks is applied for (1) solving the pickup and delivery problem with synchronized transfers, (2) computing resource hyper-prisms for sustainable transportation planning in the field of time-geography, and (3) providing an integrated framework that fully captures the interactions between supply and demand dimensions of travel to model the implications of advanced technologies and mobility services on traveler behavior.Dissertation/ThesisDoctoral Dissertation Civil, Environmental and Sustainable Engineering 201
    corecore