4,767 research outputs found

    A critical review of the routing protocols in opportunistic networks.

    Get PDF
    The goal of Opportunistic Networks (OppNets) is to enable message transmission in an infrastructure less environment where a reliable end-to-end connection between the hosts in not possible at all times. The role of OppNets is very crucial in today’s communication as it is still not possible to build a communication infrastructure in some geographical areas including mountains, oceans and other remote areas. Nodes participating in the message forwarding process in OppNets experience frequent disconnections. The employment of an appropriate routing protocol to achieve successful message delivery is one of the desirable requirements of OppNets. Routing challenges are very complex and evident in OppNets due to the dynamic nature and the topology of the intermittent networks. This adds more complexity in the choice of the suitable protocol to be employed in opportunistic scenarios, to enable message forwarding. With this in mind, the aim of this paper is to analyze a number of algorithms under each class of routing techniques that support message forwarding in OppNets and to compare those studied algorithms in terms of their performances, forwarding techniques, outcomes and success rates. An important outcome of this paper is the identifying of the optimum routing protocol under each class of routing

    Parallel Opportunistic Routing in Wireless Networks

    Full text link
    We study benefits of opportunistic routing in a large wireless ad hoc network by examining how the power, delay, and total throughput scale as the number of source- destination pairs increases up to the operating maximum. Our opportunistic routing is novel in a sense that it is massively parallel, i.e., it is performed by many nodes simultaneously to maximize the opportunistic gain while controlling the inter-user interference. The scaling behavior of conventional multi-hop transmission that does not employ opportunistic routing is also examined for comparison. Our results indicate that our opportunistic routing can exhibit a net improvement in overall power--delay trade-off over the conventional routing by providing up to a logarithmic boost in the scaling law. Such a gain is possible since the receivers can tolerate more interference due to the increased received signal power provided by the multi-user diversity gain, which means that having more simultaneous transmissions is possible.Comment: 18 pages, 7 figures, Under Review for Possible Publication in IEEE Transactions on Information Theor

    A novel cooperative opportunistic routing scheme for underwater sensor networks

    Get PDF
    Increasing attention has recently been devoted to underwater sensor networks (UWSNs) because of their capabilities in the ocean monitoring and resource discovery. UWSNs are faced with different challenges, the most notable of which is perhaps how to efficiently deliver packets taking into account all of the constraints of the available acoustic communication channel. The opportunistic routing provides a reliable solution with the aid of intermediate nodes’ collaboration to relay a packet toward the destination. In this paper, we propose a new routing protocol, called opportunistic void avoidance routing (OVAR), to address the void problem and also the energy-reliability trade-off in the forwarding set selection. OVAR takes advantage of distributed beaconing, constructs the adjacency graph at each hop and selects a forwarding set that holds the best trade-off between reliability and energy efficiency. The unique features of OVAR in selecting the candidate nodes in the vicinity of each other leads to the resolution of the hidden node problem. OVAR is also able to select the forwarding set in any direction from the sender, which increases its flexibility to bypass any kind of void area with the minimum deviation from the optimal path. The results of our extensive simulation study show that OVAR outperforms other protocols in terms of the packet delivery ratio, energy consumption, end-to-end delay, hop count and traversed distance

    SIMPLE: Stable Increased-throughput Multi-hop Protocol for Link Efficiency in Wireless Body Area Networks

    Full text link
    In this work, we propose a reliable, power efficient and high throughput routing protocol for Wireless Body Area Networks (WBANs). We use multi-hop topology to achieve minimum energy consumption and longer network lifetime. We propose a cost function to select parent node or forwarder. Proposed cost function selects a parent node which has high residual energy and minimum distance to sink. Residual energy parameter balances the energy consumption among the sensor nodes while distance parameter ensures successful packet delivery to sink. Simulation results show that our proposed protocol maximize the network stability period and nodes stay alive for longer period. Longer stability period contributes high packet delivery to sink which is major interest for continuous patient monitoring.Comment: IEEE 8th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA'13), Compiegne, Franc
    • …
    corecore