6,725 research outputs found

    Survey on Data-Centric based Routing Protocols for Wireless Sensor Networks

    Full text link
    The great concern for energy that grew with the technological advances in the field of networks and especially in sensor network has triggered various approaches and protocols that relate to sensor networks. In this context, the routing protocols were of great interest. The aim of the present paper is to discuss routing protocols for sensor networks. This paper will focus mainly on the discussion of the data-centric approach (COUGAR, rumor, SPIN, flooding and Gossiping), while shedding light on the other approaches occasionally. The functions of the nodes will be discussed as well. The methodology selected for this paper is based on a close description and discussion of the protocol. As a conclusion, open research questions and limitations are proposed to the reader at the end of this paper

    A network-aware framework for energy-efficient data acquisition in wireless sensor networks

    Get PDF
    Wireless sensor networks enable users to monitor the physical world at an extremely high fidelity. In order to collect the data generated by these tiny-scale devices, the data management community has proposed the utilization of declarative data-acquisition frameworks. While these frameworks have facilitated the energy-efficient retrieval of data from the physical environment, they were agnostic of the underlying network topology and also did not support advanced query processing semantics. In this paper we present KSpot+, a distributed network-aware framework that optimizes network efficiency by combining three components: (i) the tree balancing module, which balances the workload of each sensor node by constructing efficient network topologies; (ii) the workload balancing module, which minimizes data reception inefficiencies by synchronizing the sensor network activity intervals; and (iii) the query processing module, which supports advanced query processing semantics. In order to validate the efficiency of our approach, we have developed a prototype implementation of KSpot+ in nesC and JAVA. In our experimental evaluation, we thoroughly assess the performance of KSpot+ using real datasets and show that KSpot+ provides significant energy reductions under a variety of conditions, thus significantly prolonging the longevity of a WSN

    Progressive Processing of Continuous Range Queries in Hierarchical Wireless Sensor Networks

    Full text link
    In this paper, we study the problem of processing continuous range queries in a hierarchical wireless sensor network. Contrasted with the traditional approach of building networks in a "flat" structure using sensor devices of the same capability, the hierarchical approach deploys devices of higher capability in a higher tier, i.e., a tier closer to the server. While query processing in flat sensor networks has been widely studied, the study on query processing in hierarchical sensor networks has been inadequate. In wireless sensor networks, the main costs that should be considered are the energy for sending data and the storage for storing queries. There is a trade-off between these two costs. Based on this, we first propose a progressive processing method that effectively processes a large number of continuous range queries in hierarchical sensor networks. The proposed method uses the query merging technique proposed by Xiang et al. as the basis and additionally considers the trade-off between the two costs. More specifically, it works toward reducing the storage cost at lower-tier nodes by merging more queries, and toward reducing the energy cost at higher-tier nodes by merging fewer queries (thereby reducing "false alarms"). We then present how to build a hierarchical sensor network that is optimal with respect to the weighted sum of the two costs. It allows for a cost-based systematic control of the trade-off based on the relative importance between the storage and energy in a given network environment and application. Experimental results show that the proposed method achieves a near-optimal control between the storage and energy and reduces the cost by 0.989~84.995 times compared with the cost achieved using the flat (i.e., non-hierarchical) setup as in the work by Xiang et al.Comment: 41 pages, 20 figure

    Amorphous Placement and Informed Diffusion for Timely Monitoring by Autonomous, Resource-Constrained, Mobile Sensors

    Full text link
    Personal communication devices are increasingly equipped with sensors for passive monitoring of encounters and surroundings. We envision the emergence of services that enable a community of mobile users carrying such resource-limited devices to query such information at remote locations in the field in which they collectively roam. One approach to implement such a service is directed placement and retrieval (DPR), whereby readings/queries about a specific location are routed to a node responsible for that location. In a mobile, potentially sparse setting, where end-to-end paths are unavailable, DPR is not an attractive solution as it would require the use of delay-tolerant (flooding-based store-carry-forward) routing of both readings and queries, which is inappropriate for applications with data freshness constraints, and which is incompatible with stringent device power/memory constraints. Alternatively, we propose the use of amorphous placement and retrieval (APR), in which routing and field monitoring are integrated through the use of a cache management scheme coupled with an informed exchange of cached samples to diffuse sensory data throughout the network, in such a way that a query answer is likely to be found close to the query origin. We argue that knowledge of the distribution of query targets could be used effectively by an informed cache management policy to maximize the utility of collective storage of all devices. Using a simple analytical model, we show that the use of informed cache management is particularly important when the mobility model results in a non-uniform distribution of users over the field. We present results from extensive simulations which show that in sparsely-connected networks, APR is more cost-effective than DPR, that it provides extra resilience to node failure and packet losses, and that its use of informed cache management yields superior performance

    Adaptive Square-Shaped Trajectory-Based Service Location Protocol in Wireless Sensor Networks

    Get PDF
    In this paper we propose an adaptive square-shaped trajectory (ASST)-based service location method to ensure load scalability in wireless sensor networks. This first establishes a square-shaped trajectory over the nodes that surround a target point computed by the hash function and any user can access it, using the hash. Both the width and the size of the trajectory are dynamically adjustable, depending on the number of queries made to the service information on the trajectory. The number of sensor nodes on the trajectory varies in proportion to the changing trajectory shape, allowing high loads to be distributed around the hot spot area

    Survey of Inter-satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View

    Get PDF
    Small satellite systems enable whole new class of missions for navigation, communications, remote sensing and scientific research for both civilian and military purposes. As individual spacecraft are limited by the size, mass and power constraints, mass-produced small satellites in large constellations or clusters could be useful in many science missions such as gravity mapping, tracking of forest fires, finding water resources, etc. Constellation of satellites provide improved spatial and temporal resolution of the target. Small satellite constellations contribute innovative applications by replacing a single asset with several very capable spacecraft which opens the door to new applications. With increasing levels of autonomy, there will be a need for remote communication networks to enable communication between spacecraft. These space based networks will need to configure and maintain dynamic routes, manage intermediate nodes, and reconfigure themselves to achieve mission objectives. Hence, inter-satellite communication is a key aspect when satellites fly in formation. In this paper, we present the various researches being conducted in the small satellite community for implementing inter-satellite communications based on the Open System Interconnection (OSI) model. This paper also reviews the various design parameters applicable to the first three layers of the OSI model, i.e., physical, data link and network layer. Based on the survey, we also present a comprehensive list of design parameters useful for achieving inter-satellite communications for multiple small satellite missions. Specific topics include proposed solutions for some of the challenges faced by small satellite systems, enabling operations using a network of small satellites, and some examples of small satellite missions involving formation flying aspects.Comment: 51 pages, 21 Figures, 11 Tables, accepted in IEEE Communications Surveys and Tutorial
    corecore