888 research outputs found

    Bags of Affine Subspaces for Robust Object Tracking

    Full text link
    We propose an adaptive tracking algorithm where the object is modelled as a continuously updated bag of affine subspaces, with each subspace constructed from the object's appearance over several consecutive frames. In contrast to linear subspaces, affine subspaces explicitly model the origin of subspaces. Furthermore, instead of using a brittle point-to-subspace distance during the search for the object in a new frame, we propose to use a subspace-to-subspace distance by representing candidate image areas also as affine subspaces. Distances between subspaces are then obtained by exploiting the non-Euclidean geometry of Grassmann manifolds. Experiments on challenging videos (containing object occlusions, deformations, as well as variations in pose and illumination) indicate that the proposed method achieves higher tracking accuracy than several recent discriminative trackers.Comment: in International Conference on Digital Image Computing: Techniques and Applications, 201

    On the Local Heat Transfer Behavior or Supercritical Carbon Dioxide

    Get PDF
    A detailed study of the local heat transfer behavior of supercritical carbon dioxide (sCO2) is performed. Flows relevant to heat transfer devices, such as sCO2 heaters, recuperators, and internally cooled turbine blades are studied, with particular attention paid to data reduction methodology, and the use of appropriate reference quantities, nondimensionalizations, and correlations. Additionally, a semi-intrusive temperature measurement technique capable of obtaining highly spatially resolved temperature distributions is adapted for use in the challenging conditions of supercritical (SC) flow. SC fluids have proven difficult to study both experimentally and numerically due to dramatically changing thermodynamic and transport properties near the critical point. It is clear from the existing literature that the heat transfer processes within a SC flow vary from those of a subcritical flow, particularly near the pseudo-critical line. Poor predictions of heat transfer rates may lead to unexpected pinch-points in heat exchangers or heat transfer degradation. Existing experimental research of SC flow heat transfer has largely been limited to spatially averaged trends and/or simplified geometries. There remains a gap between the techniques used in the subcritical regime, and the needs of the supercritical fluids industries and sciences. Numerical simulations that are benchmarked against experimental sCO2 heat transfer data evaluate the ability of existing correlations to predict heat transfer in the SC regime, both away from and very near the critical point and pseudocritical line. As it is desired to harness the advantages arising from the peaks in K and Ср along this line, a study is performed assessing the applicability of a reducedorder model to this effect. Semi-intrusive temperature measurement is achieved, using proper calibration and coating, with accuracy approximating (uncalibrated) type-T thermocouple uncertainty. The benchmarked numerical simulations give good agreement with experimental HTC data, suggesting the use of commercial RANS code is suitable as a building block for the study of the physics of these flows. New, modified heat transfer correlations are obtained for sCO2 turbine blade cooling geometry. Additionally, experimental uncertainty for calculated heat transfer quantities is quantified for the first time in the near-critical region, where fluid properties see very large gradients

    Dimensionality reduction and sparse representations in computer vision

    Get PDF
    The proliferation of camera equipped devices, such as netbooks, smartphones and game stations, has led to a significant increase in the production of visual content. This visual information could be used for understanding the environment and offering a natural interface between the users and their surroundings. However, the massive amounts of data and the high computational cost associated with them, encumbers the transfer of sophisticated vision algorithms to real life systems, especially ones that exhibit resource limitations such as restrictions in available memory, processing power and bandwidth. One approach for tackling these issues is to generate compact and descriptive representations of image data by exploiting inherent redundancies. We propose the investigation of dimensionality reduction and sparse representations in order to accomplish this task. In dimensionality reduction, the aim is to reduce the dimensions of the space where image data reside in order to allow resource constrained systems to handle them and, ideally, provide a more insightful description. This goal is achieved by exploiting the inherent redundancies that many classes of images, such as faces under different illumination conditions and objects from different viewpoints, exhibit. We explore the description of natural images by low dimensional non-linear models called image manifolds and investigate the performance of computer vision tasks such as recognition and classification using these low dimensional models. In addition to dimensionality reduction, we study a novel approach in representing images as a sparse linear combination of dictionary examples. We investigate how sparse image representations can be used for a variety of tasks including low level image modeling and higher level semantic information extraction. Using tools from dimensionality reduction and sparse representation, we propose the application of these methods in three hierarchical image layers, namely low-level features, mid-level structures and high-level attributes. Low level features are image descriptors that can be extracted directly from the raw image pixels and include pixel intensities, histograms, and gradients. In the first part of this work, we explore how various techniques in dimensionality reduction, ranging from traditional image compression to the recently proposed Random Projections method, affect the performance of computer vision algorithms such as face detection and face recognition. In addition, we discuss a method that is able to increase the spatial resolution of a single image, without using any training examples, according to the sparse representations framework. In the second part, we explore mid-level structures, including image manifolds and sparse models, produced by abstracting information from low-level features and offer compact modeling of high dimensional data. We propose novel techniques for generating more descriptive image representations and investigate their application in face recognition and object tracking. In the third part of this work, we propose the investigation of a novel framework for representing the semantic contents of images. This framework employs high level semantic attributes that aim to bridge the gap between the visual information of an image and its textual description by utilizing low level features and mid level structures. This innovative paradigm offers revolutionary possibilities including recognizing the category of an object from purely textual information without providing any explicit visual example

    Integration of traditional imaging, expert systems, and neural network techniques for enhanced recognition of handwritten information

    Get PDF
    Includes bibliographical references (p. 33-37).Research supported by the I.F.S.R.C. at M.I.T.Amar Gupta, John Riordan, Evelyn Roman

    Application and Challenges of Signal Processing Techniques for Lamb Waves Structural Integrity Evaluation: Part B-Defects Imaging and Recognition Techniques

    Get PDF
    The wavefield of Lamb waves is yielded by the feature of plate-like structures. And many defects imaging techniques and intelligent recognition algorithms have been developed for defects location, sizing and recognition through analyzing the parameters of received Lamb waves signals including the arrival time, attenuation, amplitude and phase, etc. In this chapter, we give a briefly review about the defects imaging techniques and the intelligent recognition algorithms. Considering the available parameters of Lamb waves signals and the setting of detection/monitoring systems, we roughly divide the defect location and sizing techniques into four categories, including the sparse array imaging techniques, the tomography techniques, the compact array techniques, and full wavefield imaging techniques. The principle of them is introduced. Meanwhile, the intelligent recognition techniques based on various of intelligent recognition algorithms that have been widely used to analyze Lamb waves signals in the research of defect recognition are reviewed, including the support vector machine, Bayesian methodology, and the neural networks

    The Hyper Suprime-Cam Software Pipeline

    Full text link
    In this paper, we describe the optical imaging data processing pipeline developed for the Subaru Telescope's Hyper Suprime-Cam (HSC) instrument. The HSC Pipeline builds on the prototype pipeline being developed by the Large Synoptic Survey Telescope's Data Management system, adding customizations for HSC, large-scale processing capabilities, and novel algorithms that have since been reincorporated into the LSST codebase. While designed primarily to reduce HSC Subaru Strategic Program (SSP) data, it is also the recommended pipeline for reducing general-observer HSC data. The HSC pipeline includes high level processing steps that generate coadded images and science-ready catalogs as well as low-level detrending and image characterizations.Comment: 39 pages, 21 figures, 2 tables. Submitted to Publications of the Astronomical Society of Japa

    Filled-in document image identification using landmarks

    Full text link
    A technique is proposed to classify documents based on landmarks, with a reject option.Carrión Robles, D. (2011). Filled-in document image identification using landmarks. http://hdl.handle.net/10251/15836Archivo delegad

    From data acquisition to data fusion : a comprehensive review and a roadmap for the identification of activities of daily living using mobile devices

    Get PDF
    This paper focuses on the research on the state of the art for sensor fusion techniques, applied to the sensors embedded in mobile devices, as a means to help identify the mobile device user’s daily activities. Sensor data fusion techniques are used to consolidate the data collected from several sensors, increasing the reliability of the algorithms for the identification of the different activities. However, mobile devices have several constraints, e.g., low memory, low battery life and low processing power, and some data fusion techniques are not suited to this scenario. The main purpose of this paper is to present an overview of the state of the art to identify examples of sensor data fusion techniques that can be applied to the sensors available in mobile devices aiming to identify activities of daily living (ADLs)
    • …
    corecore