50,585 research outputs found

    A compendium of Technologies, Practices, Services and Policies for Scaling Climate Smart Agriculture in Odisha (India)

    Get PDF
    Stakeholders engaged in agricultural research for development (AR4D) are increasingly tackling risks associated with climate change in smallholder systems. Accordingly, development and scaling of climate-smart agriculture (CSA) are one of the priorities for all the organizations, departments and ministries associated with the farm sector. Having a ‘one-stop-shop’ compiled in the format of a compendium for CSA technologies, practices and services would therefore serve a guide for all the stakeholders for scaling CSA in smallholder systems. Bringing out a Compendium on Climate-Smart Agriculture (CSA) for Odisha, India was therefore thought of during the workshop on ‘Scaling Climate-Smart Agriculture in Odisha’ organized at Bhubaneswar on 18-19 July 2018 by International Rice Research Institute (IRRI) in collaboration with Department of Agriculture (DoA) & Farmers’ Empowerment, Indian Council of Agricultural Research-National Rice Research Institute (ICAR-NRRI), Orissa University of Agriculture and Technology (OUAT) & International Maize and Wheat Improvement Center (CIMMYT) under the aegis of CGIAR Research program on Climate Change, Agriculture and Food Security (CCAFS). The main objectives to bring forth this compendium are: to argue the case for agriculture policies and practices that are climate-smart; to raise awareness of what can be done to make agriculture policies and practices climatesmart; and to provide practical guidance and recommendations that are well referenced and, wherever possible, based on lessons learned from practical action. CSA programmes are unlikely to be effective unless their implementation is supported by sound policies and institutions. It is therefore important to enhance institutional capacities in order to implement and replicate CSA strategies. Institutions are vital to agricultural development as well as the realisation of resilient livelihoods.They are not only a tool for farmers and decision-makers, but are also the main conduit through which CSA practices can be scaled up and sustained. The focus in this compendium is on CSA and it’s relevant aspects, i.e., (i) technologies and practices, (ii) services, (iii) technology targeting, (iv) business models, (v) capacity building, and (vi) policies. The approaches and tools available in the compendium span from face-to-face technicianfarmer dialogues to more structured exchanges of online and offline e-learning. In every scenario it is clear that tailoring to local expectations and needs is key. In particular, the voice of farmers is essential to be captured as they are the key actors to promote sustainable agriculture, and their issues need to be prioritized. CSA practices are expected to sustainably increase productivity and resilience (adaptation), reduce Greenhouse Gases (mitigation), and enhance achievement of national food security along with sustainable development goals. CSA is widely expected to contribute towards achieving these objectives and enhance climate change adaptation. CSA practices have to be included in State’s Climate Policy as a priority intervention as the state steps up efforts to tackle climate change. Furthermore, emphasis shoud be laid on CSA training for a sustainable mode to enhance CSA adoption in the state hence the relevance of developing this document. The adaption of climate related knowledge, technologies and practices to local conditions, promoting joint learning by farmers, researchers, rural advisor and widely disseminating CSA practices, is critical. This compendium brings together a collection of experiences from different stakeholders with background of agricultural extension and rural advisory services in supporting CSA. The contributions are not intended to be state-of-the art academic articles but thought and discussion pieces of work in progress. The compendium itself is a ‘living‘ document which is intended to be revised periodically

    How can we make sense of smart technologies for sustainable agriculture? - A discussion paper

    Get PDF
    This paper discusses the challenges of assessing the benefits and risks of new digital technologies, so-called ‘smart technologies’ for sustainable agri-food systems. It builds on the results of a literature review that was embedded in a wider study on future options for (sustainable) farming systems in Germany. Following the concepts of Actor-Network-Theory, we can conceive of smart technologies in agriculture as networks that can only be understood in their entirety when considering the relationships with all actors involved: technology developers, users (farmers, consumers and others), data analysts, legal regulators, policy makers, and potential others. Furthermore, interaction of the technology and its implementers with nature, such as plants, entire landscapes, and animals, need to be taken into consideration. As a consequence, we have to deal with a highly complex system when assessing the technology – at a time where many of the relevant questions have not been sufficiently researched yet. Building on the FAO’s SAFA guidelines, the paper outlines criteria against which smart technologies could be assessed for their potential to contribute to a sustainable development of agri-food systems. These include aspects of governance, ecology, economy and social issues. We draw some tentative conclusions on the required framework conditions for implementation of digital technology, in particular from the perspective of sustainable agriculture. These are aimed at fuelling further discussion about the potentials and risks of the technology

    Smart Computing and Sensing Technologies for Animal Welfare: A Systematic Review

    Get PDF
    Animals play a profoundly important and intricate role in our lives today. Dogs have been human companions for thousands of years, but they now work closely with us to assist the disabled, and in combat and search and rescue situations. Farm animals are a critical part of the global food supply chain, and there is increasing consumer interest in organically fed and humanely raised livestock, and how it impacts our health and environmental footprint. Wild animals are threatened with extinction by human induced factors, and shrinking and compromised habitat. This review sets the goal to systematically survey the existing literature in smart computing and sensing technologies for domestic, farm and wild animal welfare. We use the notion of \emph{animal welfare} in broad terms, to review the technologies for assessing whether animals are healthy, free of pain and suffering, and also positively stimulated in their environment. Also the notion of \emph{smart computing and sensing} is used in broad terms, to refer to computing and sensing systems that are not isolated but interconnected with communication networks, and capable of remote data collection, processing, exchange and analysis. We review smart technologies for domestic animals, indoor and outdoor animal farming, as well as animals in the wild and zoos. The findings of this review are expected to motivate future research and contribute to data, information and communication management as well as policy for animal welfare

    Green revolution 2.0: a sustainable energy path

    Full text link
    This repository item contains a single issue of Sustainable Development Insights, a series of short policy essays that began publishing in 2008 by the Boston University Frederick S. Pardee Center for the Study of the Longer-Range Future. The series seeks to promote a broad interdisciplinary dialogue on how to accelerate sustainable development at all levels.The Green Revolution in agriculture greatly increased crop yields and averted mass starvation, but it also turned small farms into factory farms that concentrated production in a few locations and reduced the diversity of crops. In this paper, Professor Nalin Kulatilaka, Co-Director of BU’s Clean Energy & Environmental Sustainability Initiative, calls for a Green Energy Revolution that decentralizes energy supplies through a smart electricity network. He argues that such a revolution could provide for a diversity of energy sources located closer to users, which in turn could shift consumption patterns, reduce losses and decrease overall energy demand. He concludes that shifting to such a system “will adopt clean energy technologies while fostering new businesses, creating new jobs and ultimately empowering society to reach new heights in energy conservation and sustainability“

    Climate Smart Farming for Women in East Africa

    Get PDF
    According to the United Nations Food and Agriculture Organization, 60% of East Africans live as subsistence farmers. This population is particularly vulnerable to the effects of climate change which has increased the duration and intensity of droughts and floods. Droughts and floods can destroy an entire season’s harvest, causing sustenance farmers and their families to struggle for food until the next season. In an attempt to mitigate the severe effects of climate change on these farmers and reduce food insecurity in East Africa, the team has designed a small-scale aquaponic farming system that simultaneously grows fish and vegetables. This system is founded on sustainability, as aquaponics uses significantly less water to grow crops than traditional farming, making it more resilient to both severe droughts and floods, the system also does not rely on external fertilizers, and it uses recycled materials as often as possible. This aquaponic system was designed for women’s collectives in East Africa who requested help in building a portfolio of projects that they can teach to women in rural East Africa. These women’s organizations work in rural villages throughout Uganda and Kenya to help local women and their families adapt to the changing climate. Currently, their efforts have been focused on improving the quality and supply of water in the villages by constructing latrines, water filters, and rainwater catchment systems. During the 2017-2018 academic year, team members designed and built the aquaponic system in Santa Clara, California, then deployed the first prototype in Kampala, Uganda, and trained several of the collective’s leaders how to build and operate the system

    Agricultural information dissemination using ICTs: a review and analysis of information dissemination models in China

    Get PDF
    Open Access funded by China Agricultural UniversityOver the last three decades, China’s agriculture sector has been transformed from the traditional to modern practice through the effective deployment of Information and Communication Technologies (ICTs). Information processing and dissemination have played a critical role in this transformation process. Many studies in relation to agriculture information services have been conducted in China, but few of them have attempted to provide a comprehensive review and analysis of different information dissemination models and their applications. This paper aims to review and identify the ICT based information dissemination models in China and to share the knowledge and experience in applying emerging ICTs in disseminating agriculture information to farmers and farm communities to improve productivity and economic, social and environmental sustainability. The paper reviews and analyzes the development stages of China’s agricultural information dissemination systems and different mechanisms for agricultural information service development and operations. Seven ICT-based information dissemination models are identified and discussed. Success cases are presented. The findings provide a useful direction for researchers and practitioners in developing future ICT based information dissemination systems. It is hoped that this paper will also help other developing countries to learn from China’s experience and best practice in their endeavor of applying emerging ICTs in agriculture information dissemination and knowledge transfer

    Documenting the application of the Myanmar Climate-Smart Agriculture Strategy

    Get PDF
    This paper documents the testimonials of those who implemented the Myanmar Climate-Smart Agriculture Strategy (MCSAS) and accounts of those who experienced its application on the ground. Success stories and challenges in implementing MCSAS were documented. Based on the stakeholder interviews conducted, MCSAS is proven to be a valuable document in guiding the implementation of context-specific climate actions in Myanmar. Nineteen government and NGO programs, four policy documents, and an estimate of one billion USD investments were influenced by MCSAS. Following the MCSAS, the National Climate-Smart Agriculture Center of Yezin Agricultural University was established in 2018. Several projects focusing on farmers, particularly the Climate-Smart Village in the Dry Zone and the Farmer Field School in the Delta Zone, were also studied to understand the depth of the influence of MCSAS. In these cases, climate-smart practices adopted have helped farmers coped with climate change and increased their household incomes. Nevertheless, suggestions were made to further improve the Strategy with more specific actions that could be implemented and the funding options that implementers could pursue. The Strategy also needs to be integrated into the current programs of the government and its contents translated in the local language in a format that local people can understand

    Choices: Caribbean Agriculture: Our way

    Get PDF
    Agriculture and food production should not be occupations of last resort. Showcasing many fascinating insights, this title features individuals, farm families and community groups in the Caribbean who have made a deliberate choice to enter, stay and focus on achieving success in this vibrant and rewarding sector. With stories that inform, educate and inspire, Choices provides accounts of innovations in aquaculture, hydroponics, permaculture, shade-house technology and organic farming

    Report on the development of 1 feeds and forages upscaling approach

    Get PDF
    • …
    corecore