220,682 research outputs found

    Kernelized Cost-Sensitive Listwise Ranking

    Get PDF
    This thesis research aims to conduct a study on a cost-sensitive listwise approach to learning to rank. Learning to Rank is an area of application in machine learning, typically supervised, to build ranking models for Information Retrieval systems. The training data consists of lists of items with some partial order specified induced by an ordinal score or a binary judgment (relevant/not relevant). The model purpose is to produce a permutation of the items in this list in a way which is close to the rankings in the training data. This technique has been successfully applied to ranking, and several approaches have been proposed since then, including the listwise approach. A cost-sensitive version of that is an adaptation of this framework which treats the documents within a list with different probabilities, i.e. attempt to impose weights for the documents with higher cost. We then take this algorithm to the next level by kernelizing the loss and exploring the optimization in different spaces. Among the different existing likelihood algorithms, we choose ListMLE as primary focus of experimentation, since it has been shown to be the approach with the best empirical performance. The theoretical framework is given along with its mathematical properties. Experimentation is done on the benchmark LETOR dataset. They contain queries and some characteristics of the retrieved documents and its human judgments on the relevance of the documents on the queries. Based on that we will show how the Kernel Cost-Sensitive ListMLE performs compared to the baseline Plain Cost-Sensitive ListMLE, ListNet, and RankSVM and show different aspects of the proposed loss function within different families of kernels

    Cost-sensitive classification based on Bregman divergences

    Get PDF
    The main object of this PhD. Thesis is the identification, characterization and study of new loss functions to address the so-called cost-sensitive classification. Many decision problems are intrinsically cost-sensitive. However, the dominating preference for cost-insensitive methods in the machine learning literature is a natural consequence of the fact that true costs in real applications are di fficult to evaluate. Since, in general, uncovering the correct class of the data is less costly than any decision error, designing low error decision systems is a reasonable (but suboptimal) approach. For instance, consider the classification of credit applicants as either being good customers (will pay back the credit) or bad customers (will fail to pay o part of the credit). The cost of classifying one risky borrower as good could be much higher than the cost of classifying a potentially good customer as bad. Our proposal relies on Bayes decision theory where the goal is to assign instances to the class with minimum expected cost. The decision is made involving both costs and posterior probabilities of the classes. Obtaining calibrated probability estimates at the classifier output requires a suitable learning machine, a large enough representative data set as well as an adequate loss function to be minimized during learning. The design of the loss function can be aided by the costs: classical decision theory shows that cost matrices de ne class boundaries determined by posterior class probability estimates. Strictly speaking, in order to make optimal decisions, accurate probability estimates are only required near the decision boundaries. It is key to point out that the election of the loss function becomes especially relevant when the prior knowledge about the problem is limited or the available training examples are somehow unsuitable. In those cases, different loss functions lead to dramatically different posterior probabilities estimates. We focus our study on the set of Bregman divergences. These divergences offer a rich family of proper losses that has recently become very popular in the machine learning community [Nock and Nielsen, 2009, Reid and Williamson, 2009a]. The first part of the Thesis deals with the development of a novel parametric family of multiclass Bregman divergences which captures the information in the cost matrix, so that the loss function is adapted to each specific problem. Multiclass costsensitive learning is one of the main challenges in cost-sensitive learning and, through this parametric family, we provide a natural framework to successfully overcome binary tasks. Following this idea, two lines are explored: Cost-sensitive supervised classification: We derive several asymptotic results. The first analysis guarantees that the proposed Bregman divergence has maximum sensitivity to changes at probability vectors near the decision regions. Further analysis shows that the optimization of this Bregman divergence becomes equivalent to minimizing the overall cost regret in non-separable problems, and to maximizing a margin in separable problems. Cost-sensitive semi-supervised classification: When labeled data is scarce but unlabeled data is widely available, semi-supervised learning is an useful tool to make the most of the unlabeled data. We discuss an optimization problem relying on the minimization of our parametric family of Bregman divergences, using both labeled and unlabeled data, based on what is called the Entropy Minimization principle. We propose the rst multiclass cost-sensitive semi-supervised algorithm, under the assumption that inter-class separation is stronger than intra-class separation. The second part of the Thesis deals with the transformation of this parametric family of Bregman divergences into a sequence of Bregman divergences. Work along this line can be further divided into two additional areas: Foundations of sequences of Bregman divergences: We generalize some previous results about the design and characterization of Bregman divergences that are suitable for learning and their relationship with convexity. In addition, we aim to broaden the subset of Bregman divergences that are interesting for cost-sensitive learning. Under very general conditions, we nd sequences of (cost-sensitive) Bregman divergences, whose minimization provides minimum (cost-sensitive) risk for non-separable problems and some type of maximum margin classifiers in separable cases. Learning with example-dependent costs: A strong assumption is widespread through most cost-sensitive learning algorithms: misclassification costs are the same for all examples. In many cases this statement is not true. We claim that using the example-dependent costs directly is more natural and will lead to the production of more accurate classifiers. For these reasons, we consider the extension of cost-sensitive sequences of Bregman losses to example-dependent cost scenarios to generate finely tuned posterior probability estimates

    Probabilistic reframing for cost-sensitive regression

    Full text link
    © ACM, 2014. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in ACM Transactions on Knowledge Discovery from Data (TKDD), VOL. 8, ISS. 4, (October 2014) http://doi.acm.org/10.1145/2641758Common-day applications of predictive models usually involve the full use of the available contextual information. When the operating context changes, one may fine-tune the by-default (incontextual) prediction or may even abstain from predicting a value (a reject). Global reframing solutions, where the same function is applied to adapt the estimated outputs to a new cost context, are possible solutions here. An alternative approach, which has not been studied in a comprehensive way for regression in the knowledge discovery and data mining literature, is the use of a local (e.g., probabilistic) reframing approach, where decisions are made according to the estimated output and a reliability, confidence, or probability estimation. In this article, we advocate for a simple two-parameter (mean and variance) approach, working with a normal conditional probability density. Given the conditional mean produced by any regression technique, we develop lightweight “enrichment” methods that produce good estimates of the conditional variance, which are used by the probabilistic (local) reframing methods. We apply these methods to some very common families of costsensitive problems, such as optimal predictions in (auction) bids, asymmetric loss scenarios, and rejection rules.This work was supported by the MEC/MINECO projects CONSOLIDER-INGENIO CSD2007-00022 and TIN 2010-21062-C02-02, and TIN 2013-45732-C4-1-P and GVA projects PROMETEO/2008/051 and PROMETEO2011/052. Finally, part of this work was motivated by the REFRAME project (http://www.reframe-d2k.org) granted by the European Coordinated Research on Long-term Challenges in Information and Communication Sciences & Technologies ERA-Net (CHIST-ERA) and funded by Ministerio de Economia y Competitividad in Spain (PCIN-2013-037).Hernández Orallo, J. (2014). Probabilistic reframing for cost-sensitive regression. ACM Transactions on Knowledge Discovery from Data. 8(4):1-55. https://doi.org/10.1145/2641758S15584G. Bansal, A. Sinha, and H. Zhao. 2008. Tuning data mining methods for cost-sensitive regression: A study in loan charge-off forecasting. Journal of Management Information System 25, 3 (Dec. 2008), 315--336.A. P. Basu and N. Ebrahimi. 1992. Bayesian approach to life testing and reliability estimation using asymmetric loss function. Journal of Statistical Planning and Inference 29, 1--2 (1992), 21--31.A. Bella, C. Ferri, J. Hernández-Orallo, and M. J. Ramírez-Quintana. 2010. Quantification via probability estimators. In Proceedings of the 2010 IEEE International Conference on Data Mining. IEEE, 737--742.A. Bella, C. Ferri, J. Hernández-Orallo, and M. J. Ramírez-Quintana. 2013. Aggregative quantification for regression. Data Mining and Knowledge Discovery (2013), 1--44.A. Bella, C. Ferri, J. Hernández-Orallo, and M. J. Ramírez-Quintana. 2009. Calibration of machine learning models. In Handbook of Research on Machine Learning Applications. IGI Global, 128--146.A. Bella, C. Ferri, J. Hernández-Orallo, and M. J. Ramírez-Quintana. 2011. Using negotiable features for prescription problems. Computing 91, 2 (2011), 135--168.J. Bi and K. P. Bennett. 2003. Regression error characteristic curves. In Proceedings of the 20th International Conference on Machine Learning (ICML’03).Z. Bosnić and I. Kononenko. 2008. Comparison of approaches for estimating reliability of individual regression predictions. Data & Knowledge Engineering 67, 3 (2008), 504--516.Z. Bosnić and I. Kononenko. 2009. An overview of advances in reliability estimation of individual predictions in machine learning. Intelligent Data Analysis 13, 2 (2009), 385--401.L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. 1984. Classification and Regression Trees. Wadsworth.P. F. Christoffersen and F. X. Diebold. 1996. Further results on forecasting and model selection under asymmetric loss. Journal of Applied Econometrics 11, 5 (1996), 561--571.P. F. Christoffersen and F. X. Diebold. 1997. Optimal prediction under asymmetric loss. Econometric Theory 13 (1997), 808--817.I. Cohen and M. Goldszmidt. 2004. Properties and benefits of calibrated classifiers. Knowledge Discovery in Databases: PKDD 2004 (2004), 125--136.S. Crone. 2002. Training artificial neural networks for time series prediction using asymmetric cost functions. In Proceedings of the 9th International Conference on Neural Information Processing.J. Demšar. 2006. Statistical comparisons of classifiers over multiple data sets. The Journal of Machine Learning Research 7 (2006), 1--30.M. Dumas, L. Aldred, G. Governatori, and A. H. M. Ter Hofstede. 2005. Probabilistic automated bidding in multiple auctions. Electronic Commerce Research 5, 1 (2005), 25--49.C. Elkan. 2001. The foundations of cost-sensitive learning. In Proceedings of the 17th International Conference on Artificial Intelligence (’01), Bernhard Nebel (Ed.). San Francisco, CA, 973--978.G. Elliott and A. Timmermann. 2004. Optimal forecast combinations under general loss functions and forecast error distributions. Journal of Econometrics 122, 1 (2004), 47--79.T. Fawcett. 2006a. An introduction to ROC analysis. Pattern Recognition Letters 27, 8 (2006), 861--874.T. Fawcett. 2006b. ROC graphs with instance-varying costs. Pattern Recognition Letters 27, 8 (2006), 882--891.C. Ferri, P. Flach, and J. Hernández-Orallo. 2002. Learning decision trees using the area under the ROC curve. In Proceedings of the International Conference on Machine Learning. 139--146.C. Ferri, P. Flach, and J. Hernández-Orallo. 2003. Improving the AUC of probabilistic estimation trees. In Proceedings of the 14th European Conference on Machine Learning (ECML’03). Springer, 121--132.C. Ferri and J. Hernández-Orallo. 2004. Cautious classifiers. In ROC Analysis in Artificial Intelligence, 1st International Workshop, ROCAI-2004, Valencia, Spain, August 22, 2004, J. Hernández-Orallo, C. Ferri, N. Lachiche, and P. A. Flach (Eds.). 27--36.P. Flach. 2012. Machine Learning: The Art and Science of Algorithms that Make Sense of Data. Cambridge University Press.G. Forman. 2008. Quantifying counts and costs via classification. Data Mining and Knowledge Discovery 17, 2 (2008), 164--206.S. García and F. Herrera. 2008. An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons. The Journal of Machine Learning Research 9, 2677--2694 (2008), 66.R. Ghani. 2005. Price prediction and insurance for online auctions. In Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining (KDD’05). ACM, New York, NY, 411--418.C. W. J. Granger. 1969. Prediction with a generalized cost of error function. Operational Research (1969), 199--207.C. W. J. Granger. 1999. Outline of forecast theory using generalized cost functions. Spanish Economic Review 1, 2 (1999), 161--173.P. Hall, J. Racine, and Q. Li. 2004. Cross-validation and the estimation of conditional probability densities. Journal of the American Statistical Association 99, 468 (2004), 1015--1026.P. Hall, R. C. L. Wolff, and Q. Yao. 1999. Methods for estimating a conditional distribution function. Journal of the American Statistical Association (1999), 154--163.T. J. Hastie, R. J. Tibshirani, and J. H. Friedman. 2009. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer.J. Hernández-Orallo. 2013. ROC curves for regression. Pattern Recognition 46, 12 (2013), 3395--3411.J. Hernández-Orallo, P. Flach, and C. Ferri. 2012. A unified view of performance metrics: Translating threshold choice into expected classification loss. Journal of Machine Learning Research 13 (2012), 2813--2869.J. Hernández-Orallo, P. Flach, and C. Ferri. 2013. ROC curves in cost space. Machine Learning 93, 1 (2013), 71--91.J. N. Hwang, S. R. Lay, and A. Lippman. 1994. Nonparametric multivariate density estimation: A comparative study. IEEE Transactions on Signal Processing 42, 10 (1994), 2795--2810.R. J. Hyndman, D. M. Bashtannyk, and G. K. Grunwald. 1996. Estimating and visualizing conditional densities. Journal of Computational and Graphical Statistics (1996), 315--336.N. Japkowicz and M. Shah. 2011. Evaluating Learning Algorithms: A Classification Perspective. Cambridge University Press.M. Jino, B. T. de Abreu, and others. 2010. Machine learning methods and asymmetric cost function to estimate execution effort of software testing. In Proceedings of the 2010 3rd International Conference on Software Testing, Verification and Validation (ICST’10). IEEE, 275--284.B. Kitts and B. Leblanc. 2004. Optimal bidding on keyword auctions. Electronic Markets 14, 3 (2004), 186--201.N. Lachiche and P. Flach. 2003. Improving accuracy and cost of two-class and multi-class probabilistic classifiers using ROC curves. In Proceedings of the International Conference on Machine Learning, Vol. 20-1. 416.H. Papadopoulos. 2008. Inductive conformal prediction: Theory and application to neural networks. Tools in Artificial Intelligence 18 (2008), 315--330.H. Papadopoulos, K. Proedrou, V. Vovk, and A. Gammerman. 2002. Inductive confidence machines for regression. In Machine Learning: ECML 2002, Tapio Elomaa, Heikki Mannila, and Hannu Toivonen (Eds.). Lecture Notes in Computer Science, Vol. 2430. Springer, Berlin, 185--194.H. Papadopoulos, V. Vovk, and A. Gammerman. 2011. Regression conformal prediction with nearest neighbours. Journal of Artificial Intelligence Research 40, 1 (2011), 815--840.T. Pietraszek. 2007. On the use of ROC analysis for the optimization of abstaining classifiers. Machine Learning 68, 2 (2007), 137--169.J. C. Platt. 1999. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In Advances in Large Margin Classifiers. MIT Press, Boston, 61--74.F. Provost and P. Domingos. 2003. Tree induction for probability-based ranking. Machine Learning 52, 3 (2003), 199--215.R Team and others. 2012. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.R. Ribeiro. 2011. Utility-based Regression. PhD thesis, Department of Computer Science, Faculty of Sciences, University of Porto.M. Rosenblatt. 1969. Conditional probability density and regression estimators. Multivariate Analysis II 25 (1969), 31.S. Rosset, C. Perlich, and B. Zadrozny. 2007. Ranking-based evaluation of regression models. Knowledge and Information Systems 12, 3 (2007), 331--353.R. E. Schapire, P. Stone, D. McAllester, M. L. Littman, and J. A. Csirik. 2002. Modeling auction price uncertainty using boosting-based conditional density estimation. In Proceedings of the International Conference on Machine Learning. 546--553.G. Shafer and V. Vovk. 2008. A tutorial on conformal prediction. Journal of Machine Learning Research 9 (2008), 371--421.J. A. Swets, R. M. Dawes, and J. Monahan. 2000. Better decisions through science. Scientific American 283, 4 (Oct. 2000), 82--87.R. D. Thompson and A. P. Basu. 1996. Asymmetric loss functions for estimating system reliability. In Bayesian Analysis in Statistics and Econometrics. John Wiley & Sons, 471--482.L. Torgo. 2005. Regression error characteristic surfaces. In Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining. ACM, 697--702.L. Torgo. 2010. Data Mining with R. Chapman and Hall/CRC Press.L. Torgo and R. Ribeiro. 2007. Utility-based regression. Knowledge Discovery in Databases: PKDD 2007. 597--604.L. Torgo and R. Ribeiro. 2009. Precision and recall for regression. In Discovery Science. Springer, 332--346.P. Turney. 2000. Types of cost in inductive concept learning. Canada National Research Council Publications Archive.L. Wasserman. 2006. All of Nonparametric Statistics. Springer-Verlag, New York.M. P. Wellman, D. M. Reeves, K. M. Lochner, and Y. Vorobeychik. 2004. Price prediction in a trading agent competition. Journal of Artificial Intelligence Research 21 (2004), 19--36.K. Yu and M. C. Jones. 2004. Likelihood-based local linear estimation of the conditional variance function. Journal of the American Statistical Association 99, 465 (2004), 139--144.B. Zadrozny and C. Elkan. 2002. Transforming classifier scores into accurate multiclass probability estimates. In Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 694--699.A. Zellner. 1986. Bayesian estimation and prediction using asymmetric loss functions. Journal of the American Statistical Association (1986), 446--451.H. Zhao, A. P. Sinha, and G. Bansal. 2011. An extended tuning method for cost-sensitive regression and forecasting. Decision Support Systems
    corecore