3,564 research outputs found

    Improving Roadside Unit deployment in vehicular networks by exploiting genetic algorithms

    Get PDF
    Vehicular networks make use of the Roadside Units (RSUs) to enhance the communication capabilities of the vehicles in order to forward control messages and/or to provide Internet access to vehicles, drivers and passengers. Unfortunately, within vehicular networks, the wireless signal propagation is mostly affected by buildings and other obstacles (e.g., urban fixtures), in particular when considering the IEEE 802.11p standard. Therefore, a crowded RSU deployment may be required to ensure vehicular communications within urban environments. Furthermore, some applications, notably those applications related to safety, require a fast and reliable warning data transmission to the emergency services and traffic authorities. However, communication is not always possible in vehicular environments due to the lack of connectivity even employing multiple hops. To overcome the signal propagation problem and delayed warning notification time issues, an effective, smart, cost-effective and all-purpose RSU deployment policy should be put into place. In this paper, we propose the genetic algorithm for roadside unit deployment (GARSUD) system, which uses a genetic algorithm that is capable of automatically providing an RSU deployment suitable for any given road map layout. Our simulation results show that GARSUD is able to reduce the warning notification time (the time required to inform emergency authorities in traffic danger situations) and to improve vehicular communication capabilities within different density scenarios and complexity layouts

    A GRASP-based heuristic for allocating the roadside infrastructure maximizing the number of distinct vehicles experiencing contact opportunities

    Get PDF
    In this work the allocation of Roadside Units (RSUs) in a V2I network is modeled as a Maximum Coverage Problem. The main objective is to maximize the number of distinct vehicles contacting the infrastructure. Two different approaches are presented to solve the problem. The first one is an ILP model that can found optimal solutions or give sharp upper and lower bounds for the problem. The second one is a GRASP-based heuristic that can found close-to-optimal solutions. The GRASP-based heuristic is compared with a previous work achieving better results. Furthermore, a new metric to measure the efficiency of a Deployment strategy is presented
    • …
    corecore