708 research outputs found

    Determination and dynamic compensation of fictitious power in electric power systems

    Get PDF
    D.Ing. (Electrical & Electronic Engineering)Please refer to full text to view abstrac

    Discrete Wavelet Transforms

    Get PDF
    The discrete wavelet transform (DWT) algorithms have a firm position in processing of signals in several areas of research and industry. As DWT provides both octave-scale frequency and spatial timing of the analyzed signal, it is constantly used to solve and treat more and more advanced problems. The present book: Discrete Wavelet Transforms: Algorithms and Applications reviews the recent progress in discrete wavelet transform algorithms and applications. The book covers a wide range of methods (e.g. lifting, shift invariance, multi-scale analysis) for constructing DWTs. The book chapters are organized into four major parts. Part I describes the progress in hardware implementations of the DWT algorithms. Applications include multitone modulation for ADSL and equalization techniques, a scalable architecture for FPGA-implementation, lifting based algorithm for VLSI implementation, comparison between DWT and FFT based OFDM and modified SPIHT codec. Part II addresses image processing algorithms such as multiresolution approach for edge detection, low bit rate image compression, low complexity implementation of CQF wavelets and compression of multi-component images. Part III focuses watermaking DWT algorithms. Finally, Part IV describes shift invariant DWTs, DC lossless property, DWT based analysis and estimation of colored noise and an application of the wavelet Galerkin method. The chapters of the present book consist of both tutorial and highly advanced material. Therefore, the book is intended to be a reference text for graduate students and researchers to obtain state-of-the-art knowledge on specific applications

    Synchrophasor Assisted Efficient Fault Location Techniques In An Active Distribution Network

    Get PDF
    Reliability of an electrical system can be improved by an efficient fault location identification for the fast repair and remedial actions. This scenario changes when there are large penetrations of distributed generation (DG) which makes the distribution system an active distribution system. An efficient use of synchrophasors in the distribution network is studied with bidirectional power flow, harmonics and low angle difference consideration which are not prevalent in a transmission network. A synchrophasor estimation algorithm for the P class PMU is developed and applied to identify efficient fault location. A fault location technique using two ended synchronized measurement is derived from the principle of transmission line settings to work in a distribution network which is independent of line parameters. The distribution systems have less line length, harmonics and different sized line conductors, which affects the sensitivity of the synchronized measurements, Total Vector Error (TVE) and threshold for angular separation between different points in the network. A new signal processing method based on Discrete Fourier Transform (DFT) is utilized to work in a distribution network as specified in IEEE C37.118 (2011) standard for synchrophasor. A specific P and M classes of synchrophasor measurements are defined in the standard. A tradeoff between fast acting P class and detailed measurement M class is sought to work specifically in the distribution system settings which is subjected to large amount of penetrations from the renewable energy

    Strip tracking in hot strip mills

    Get PDF
    In the finishing mill, steel strip is rolled from thick slabs through pairs of rollers housed in a continuous train of seven roll stands. As the strip is rolled, unwanted lateral movement, known as strip tracking, can cause the strip to collide with the edge of the mill. Strip tracking control is currently a manual operation, relying on the skill of the operators. When tracking is observed, the stand tilt is adjusted asymmetrically, causing a camber in the strip, steering it towards the centreline. Tracking control can be automated if a reliable measurement of position is available. A vision-based system was developed to measure strip position. Cooling water, steam, high temperatures and electrical noise create a hazardous environment for electronic equipment and hamper image analysis. Hardware was specified to protect all equipment against the environment. A novel image analysis method combining predictive elements, filtering and Bezier curve fitting was created to allow measurements to be made with large amounts of cooling water obscuring the strip edges. The measurement system was designed to integrate with the existing mill systems, using the OPC protocol for communication. The system was created as a development system with only two cameras included, but allowed for additional cameras to be easily added and automatically detected. The results of the system showed that the image analysis techniques were effective, providing an estimated final resolution of 3.5mm/pixel, with measurements ±2mm within 60% confidence. Hardware performance provided good protection of the equipment against the environment but poor quality installation limited overall system performance. A computer model was developed to simulate tracking behaviour in the mill with non-linear variations of strip properties across the strip. The model was not completed to a satisfactory standard capable of producing useful results but the theories described could be developed further.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Strip tracking in hot strip mills

    Get PDF
    In the finishing mill, steel strip is rolled from thick slabs through pairs of rollers housed in a continuous train of seven roll stands. As the strip is rolled, unwanted lateral movement, known as strip tracking, can cause the strip to collide with the edge of the mill. Strip tracking control is currently a manual operation, relying on the skill of the operators. When tracking is observed, the stand tilt is adjusted asymmetrically, causing a camber in the strip, steering it towards the centreline. Tracking control can be automated if a reliable measurement of position is available. A vision-based system was developed to measure strip position. Cooling water, steam, high temperatures and electrical noise create a hazardous environment for electronic equipment and hamper image analysis. Hardware was specified to protect all equipment against the environment. A novel image analysis method combining predictive elements, filtering and Bezier curve fitting was created to allow measurements to be made with large amounts of cooling water obscuring the strip edges. The measurement system was designed to integrate with the existing mill systems, using the OPC protocol for communication. The system was created as a development system with only two cameras included, but allowed for additional cameras to be easily added and automatically detected. The results of the system showed that the image analysis techniques were effective, providing an estimated final resolution of 3.5mm/pixel, with measurements ±2mm within 60% confidence. Hardware performance provided good protection of the equipment against the environment but poor quality installation limited overall system performance. A computer model was developed to simulate tracking behaviour in the mill with non-linear variations of strip properties across the strip. The model was not completed to a satisfactory standard capable of producing useful results but the theories described could be developed further

    Data-driven vibration prognosis using multiple-input finite impulse response filters and application to railway-induced vibration of timber buildings

    Get PDF
    With this paper, we present a vibration prognosis method based on finite impulse responses. The impulse responses are identified using measurement data from an existing building and consider a multiple-input/multiple-output topology. Vibration prognosis in urban buildings is becoming increasingly important, since more and more buildings are being constructed close to urban infrastructure. Combined with modern and ecological choices of building materials and the low vibration levels required by current standards, serviceability in terms of structural dynamics becomes an issue. Sources of vibration in urban settings include railway and metro lines as well as road traffic. This work focuses on a method especially suited to the three- dimensional vibration state encountered in modern timber buildings. Under the assumption of linear time-invariant structural dynamic behaviour, we develop a time- domain identification approach. The novelties of this contribution lie in the formulation of a numerically efficient method to identify multiple-input finite impulse response filters and its application to measurement data of a timber building. We validate this data-driven prognosis method using measurement data from a building constructed from cross-laminated timber, considering the three-dimensional vibration behaviour. The accuracy and limitations are assessed using railway-induced vibrations as a typical source of disturbance by infrastructure. We show that vibration data from the foundation can be used for effective prognosis of the top floor slabs considering train types not included in the identification data set. Based on the prognosis method, a virtual sensor concept for long-term monitoring is presented

    Protection of multi-inverter based microgrid using phase angle trajectory

    Get PDF
    This thesis presents a simple, yet a clever way of using the current phase angle to develop low bandwidth communication-assisted line protection strategies for medium and low voltage AC microgrids, particularly those with multi-inverter interfaced distributed generators. It is now a trend in both AC transmission and distribution segments of power network that inverters interface renewable energy to the system. Unlike synchronous generators the fault feeding, and control characteristic of these generators are different and mostly influenced by the topology, switching, control deployed in the power electronics interface. The limited and controlled fault current challenges the existing conventional protection schemes. Offering higher power supply reliability and system resilience than conventional radial distribution systems, multi-inverter based microgrids, particularly those with loop and mesh typologies, are characterised by bidirectional power flow. This further constrains traditional protections such that communication-less protection schemes become ineffective for such systems. So unit protection types, such as differential protection, become more technically suitable for such microgrids despite the necessity for a communication system. In this thesis, two current direction based protection schemes for medium voltage islanded microgrids have been developed. The change in current flow direction in a line is detected using the cosine of the positive sequence current phase angle. Expressing the change and no-change of the flow directions as binary states, a low bandwidth communication based protection scheme is proposed comparing the binary states from local and remote ends of the line. To further enhance the scope and reliability of this scheme, a second protection scheme is proposed in Chapter 7 whereby the cosine function is combined with the rate of change of the slope of the phase angle (ROCOSP). This combination allows the detection and isolation of a fault even with the failure of the communication channel between relays protecting a faulted line. Furthermore, these scheme can work together and share the communication infrastructure as primary and backup protections. The performance of these schemes was assessed through simulations of microgrid models developed in Matlab/Simulink.Open Acces

    Microwave Antennas for Energy Harvesting Applications

    Get PDF
    In the last few years, the demand for power has increased; therefore, the need for alternate energy sources has become essential. Sources of fossil fuels are finite, are costly, and causes environmental hazard. Sustainable, environmentally benign energy can be derived from nuclear fission or captured from ambient sources. Large-scale ambient energy is widely available and large-scale technologies are being developed to efficiently capture it. At the other end of the scale, there are small amounts of wasted energy that could be useful if captured. There are various types of external energy sources such as solar, thermal, wind, and RF energy. Energy has been harvested for different purposes in the last few recent years. Energy harvesting from inexhaustible sources with no adverse environmental effect can provide unlimited energy for harvesting in a way of powering an embedded system from the environment. It could be RF energy harvesting by using antennas that can be held on the car glass or building, or in any places. The abundant RF energy is harvested from surrounding sources. This chapter focuses on RF energy harvesting in which the abundant RF energy from surrounding sources, such as nearby mobile phones, wireless LANs (WLANs), Wi-Fi, FM/AM radio signals, and broadcast television signals or DTV, is captured by a receiving antenna and rectified into a usable DC voltage. A practical approach for RF energy harvesting design and management of the harvested and available energy for wireless sensor networks is to improve the energy efficiency and large accepted antenna gain. The emerging self-powered systems challenge and dictate the direction of research in energy harvesting (EH). There are a lot of applications of energy harvesting such as wireless weather stations, car tire pressure monitors, implantable medical devices, traffic alert signs, and mars rover. A lot of researches are done to create several designs of rectenna (antenna and rectifier) that meet various objectives for use in RF energy harvesting, whatever opaque or transparent. However, most of the designed antennas are opaque and prevent the sunlight to pass through, so it is hard to put it on the car glass or window. Thus, there should be a design for transparent antenna that allows the sunlight to pass through. Among various antennas, microstrip patch antennas are widely used because they are low profile, are lightweight, and have planar structure. Microstrip patch-structured rectennas are evaluated and compared with an emphasis on the various methods adopted to obtain a rectenna with harmonic rejection functionality, frequency, and polarization selectivity. Multiple frequency bands are tapped for energy harvesting, and this aspect of the implementation is one of the main focus points. The bands targeted for harvesting in this chapter will be those that are the most readily available to the general population. These include Wi-Fi hotspots, as well as cellular (900/850 MHz band), personal communications services (1800/1900 MHz band), and sources of 2.4 GHz and WiMAX (2.3/3.5 GHz) network transmitters. On the other hand, at high frequency, advances in nanotechnology have led to the development of semiconductor-based solar cells, nanoscale antennas for power harvesting applications, and integration of antennas into solar cells to design low-cost light-weight systems. The role of nanoantenna system is transforming thermal energy provided by the sun to electricity. Nanoantennas target the mid-infrared wavelengths where conventional photo voltaic cells are inefficient. However, the concept of using optical rectenna for harvesting solar energy was first introduced four decades ago. Recently, it has invited a surge of interest, with different laboratories around the world working on various aspects of the technology. The result is a technology that can be efficient and inexpensive, requiring only low-cost materials. Unlike conventional solar cells that harvest energy in visible light frequency range. Since the UV frequency range is much greater than visible light, we consider the quantum mechanical behavior of a driven particle in nanoscale antennas for power harvesting applications
    • …
    corecore