5,546 research outputs found

    Cooperative Game Theory within Multi-Agent Systems for Systems Scheduling

    Get PDF
    Research concerning organization and coordination within multi-agent systems continues to draw from a variety of architectures and methodologies. The work presented in this paper combines techniques from game theory and multi-agent systems to produce self-organizing, polymorphic, lightweight, embedded agents for systems scheduling within a large-scale real-time systems environment. Results show how this approach is used to experimentally produce optimum real-time scheduling through the emergent behavior of thousands of agents. These results are obtained using a SWARM simulation of systems scheduling within a High Energy Physics experiment consisting of 2500 digital signal processors.Comment: Fourth International Conference on Hybrid Intelligent Systems (HIS), Kitakyushu, Japan, December, 200

    Time-efficient fault detection and diagnosis system for analog circuits

    Get PDF
    Time-efficient fault analysis and diagnosis of analog circuits are the most important prerequisites to achieve online health monitoring of electronic equipments, which are involving continuing challenges of ultra-large-scale integration, component tolerance, limited test points but multiple faults. This work reports an FPGA (field programmable gate array)-based analog fault diagnostic system by applying two-dimensional information fusion, two-port network analysis and interval math theory. The proposed system has three advantages over traditional ones. First, it possesses high processing speed and smart circuit size as the embedded algorithms execute parallel on FPGA. Second, the hardware structure has a good compatibility with other diagnostic algorithms. Third, the equipped Ethernet interface enhances its flexibility for remote monitoring and controlling. The experimental results obtained from two realistic example circuits indicate that the proposed methodology had yielded competitive performance in both diagnosis accuracy and time-effectiveness, with about 96% accuracy while within 60 ms computational time.Peer reviewedFinal Published versio

    Towards a Holistic CAD Platform for Nanotechnologies

    Get PDF
    Silicon-based CMOS technologies are predicted to reach their ultimate limits by the middle of the next decade. Research on nanotechnologies is actively conducted, in a world-wide effort to develop new technologies able to maintain the Moore's law. They promise revolutionizing the computing systems by integrating tremendous numbers of devices at low cost. These trends will have a profound impact on the architectures of computing systems and will require a new paradigm of CAD. The paper presents a work in progress on this direction. It is aimed at fitting requirements and constraints of nanotechnologies, in an effort to achieve efficient use of the huge computing power promised by them. To achieve this goal we are developing CAD tools able to exploit efficiently these huge computing capabilities promised by nanotechnologies in the domain of simulation of complex systems composed by huge numbers of relatively simple elements.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    Prognostic Reasoner based adaptive power management system for a more electric aircraft

    Get PDF
    This research work presents a novel approach that addresses the concept of an adaptive power management system design and development framed in the Prognostics and Health Monitoring(PHM) perspective of an Electrical power Generation and distribution system(EPGS).PHM algorithms were developed to detect the health status of EPGS components which can accurately predict the failures and also able to calculate the Remaining Useful Life(RUL), and in many cases reconfigure for the identified system and subsystem faults. By introducing these approach on Electrical power Management system controller, we are gaining a few minutes lead time to failures with an accurate prediction horizon on critical systems and subsystems components that may introduce catastrophic secondary damages including loss of aircraft. The warning time on critical components and related system reconfiguration must permits safe return to landing as the minimum criteria and would enhance safety. A distributed architecture has been developed for the dynamic power management for electrical distribution system by which all the electrically supplied loads can be effectively controlled.A hybrid mathematical model based on the Direct-Quadrature (d-q) axis transformation of the generator have been formulated for studying various structural and parametric faults. The different failure modes were generated by injecting faults into the electrical power system using a fault injection mechanism. The data captured during these studies have been recorded to form a “Failure Database” for electrical system. A hardware in loop experimental study were carried out to validate the power management algorithm with FPGA-DSP controller. In order to meet the reliability requirements a Tri-redundant electrical power management system based on DSP and FPGA has been develope

    LEGaTO: first steps towards energy-efficient toolset for heterogeneous computing

    Get PDF
    LEGaTO is a three-year EU H2020 project which started in December 2017. The LEGaTO project will leverage task-based programming models to provide a software ecosystem for Made-in-Europe heterogeneous hardware composed of CPUs, GPUs, FPGAs and dataflow engines. The aim is to attain one order of magnitude energy savings from the edge to the converged cloud/HPC.Peer ReviewedPostprint (author's final draft

    Demystifying the Characteristics of 3D-Stacked Memories: A Case Study for Hybrid Memory Cube

    Full text link
    Three-dimensional (3D)-stacking technology, which enables the integration of DRAM and logic dies, offers high bandwidth and low energy consumption. This technology also empowers new memory designs for executing tasks not traditionally associated with memories. A practical 3D-stacked memory is Hybrid Memory Cube (HMC), which provides significant access bandwidth and low power consumption in a small area. Although several studies have taken advantage of the novel architecture of HMC, its characteristics in terms of latency and bandwidth or their correlation with temperature and power consumption have not been fully explored. This paper is the first, to the best of our knowledge, to characterize the thermal behavior of HMC in a real environment using the AC-510 accelerator and to identify temperature as a new limitation for this state-of-the-art design space. Moreover, besides bandwidth studies, we deconstruct factors that contribute to latency and reveal their sources for high- and low-load accesses. The results of this paper demonstrates essential behaviors and performance bottlenecks for future explorations of packet-switched and 3D-stacked memories.Comment: EEE Catalog Number: CFP17236-USB ISBN 13: 978-1-5386-1232-

    Real-Time Fault Detection and Diagnosis System for Analog and Mixed-Signal Circuits of Acousto-Magnetic EAS Devices

    Get PDF
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The paper discusses fault diagnosis of the electronic circuit board, part of acousto-magnetic electronic article surveillance detection devices. The aim is that the end-user can run the fault diagnosis in real time using a portable FPGA-based platform so as to gain insight into the failures that have occurred.Peer reviewe

    From FPGA to ASIC: A RISC-V processor experience

    Get PDF
    This work document a correct design flow using these tools in the Lagarto RISC- V Processor and the RTL design considerations that must be taken into account, to move from a design for FPGA to design for ASIC
    • …
    corecore