1,463 research outputs found

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Sensor-based autonomous pipeline monitoring robotic system

    Get PDF
    The field of robotics applications continues to advance. This dissertation addresses the computational challenges of robotic applications and translations of actions using sensors. One of the most challenging fields for robotics applications is pipeline-based applications which have become an indispensable part of life. Proactive monitoring and frequent inspections are critical in maintaining pipeline health. However, these tasks are highly expensive using traditional maintenance systems, knowing that pipeline systems can be largely deployed in an inaccessible and hazardous environment. Thus, we propose a novel cost effective, scalable, customizable, and autonomous sensor-based robotic system, called SPRAM System (Sensor-based Autonomous Pipeline Monitoring Robotic System). It combines robot agent based technologies with sensing technologies for efficiently locating health related events and allows active and corrective monitoring and maintenance of the pipelines. The SPRAM System integrates RFID systems with mobile sensors and autonomous robots. While the mobile sensor motion is based on the fluid transported by the pipeline, the fixed sensors provide event and mobile sensor location information and contribute efficiently to the study of health history of the pipeline. In addition, it permits a good tracking of the mobile sensors. Using the output of event analysis, a robot agent gets command from the controlling system, travels inside the pipelines for detailed inspection and repairing of the reported incidents (e.g., damage, leakage, or corrosion). The key innovations of the proposed system are 3-fold: (a) the system can apply to a large variety of pipeline systems; (b) the solution provided is cost effective since it uses low cost powerless fixed sensors that can be setup while the pipeline system is operating; (c) the robot is autonomous and the localization technique allows controllable errors. In this dissertation, some simulation experiments described along with prototyping activities demonstrate the feasibility of the proposed system

    Movement-efficient Sensor Deployment in Wireless Sensor Networks

    Full text link
    We study a mobile wireless sensor network (MWSN) consisting of multiple mobile sensors or robots. Two key issues in MWSNs - energy consumption, which is dominated by sensor movement, and sensing coverage - have attracted plenty of attention, but the interaction of these issues is not well studied. To take both sensing coverage and movement energy consumption into consideration, we model the sensor deployment problem as a constrained source coding problem. %, which can be applied to different coverage tasks, such as area coverage, target coverage, and barrier coverage. Our goal is to find an optimal sensor deployment to maximize the sensing coverage with specific energy constraints. We derive necessary conditions to the optimal sensor deployment with (i) total energy constraint and (ii) network lifetime constraint. Using these necessary conditions, we design Lloyd-like algorithms to provide a trade-off between sensing coverage and energy consumption. Simulation results show that our algorithms outperform the existing relocation algorithms.Comment: 18 pages, 10 figure

    Quality-of-service in wireless sensor networks: state-of-the-art and future directions

    Get PDF
    Wireless sensor networks (WSNs) are one of today’s most prominent instantiations of the ubiquituous computing paradigm. In order to achieve high levels of integration, WSNs need to be conceived considering requirements beyond the mere system’s functionality. While Quality-of-Service (QoS) is traditionally associated with bit/data rate, network throughput, message delay and bit/packet error rate, we believe that this concept is too strict, in the sense that these properties alone do not reflect the overall quality-ofservice provided to the user/application. Other non-functional properties such as scalability, security or energy sustainability must also be considered in the system design. This paper identifies the most important non-functional properties that affect the overall quality of the service provided to the users, outlining their relevance, state-of-the-art and future research directions

    Multi Sensor Fusion Based Framework For Efficient Mobile Robot Collision Avoidance and Path Following System

    Get PDF
    The field of autonomous mobile robotics has recently gained the interests of many researchers. Due to the specific needs required by various applications of mobile robot systems (especially in navigation), designing a real-time obstacle avoidance and path following robot system has become the backbone of controlling robots in unknown environments. Therefore, an efficient collision avoidance and path following methodology is needed to develop an intelligent and effective autonomous mobile robot system. Mobile robots are equipped with various types of sensors (such as GPS, camera, infrared and ultrasonic sensors); these sensors are used to observe the surrounding environment. However, these sensors sometimes fail and have inaccurate readings. Therefore, the integration of sensor fusion will help to solve this dilemma and enhance the overall performance. A new technique for line following and collision avoidance in the mobile robotic systems is introduced. The proposed technique relies on the use of infrared sensors and involves a reasonable level of calculations, to be easily used in real-time control applications. In addition, a fusion model based on fuzzy logic is proposed. Eight distance sensors and a range finder camera are used for the collision avoidance approach, where three ground sensors are used for the line or path following approach. The fuzzy system is composed of nine inputs (which are the eight distance sensors and the camera), two outputs (which are the left and right velocities of the mobile robot’s wheels), and twenty four fuzzy rules for the robot’s movement. Webots Pro simulator is used for modeling the environment and robot to show the ability of the robot to follow a path, detect obstacles, and navigate around them to avoid collision. It also shows that the robot has been successfully following extremely congested curves and has avoided any obstacle that emerged on its path. The proposed methodology which includes the collision avoidance based on fuzzy logic fusion model and line following robot, has been implemented and tested through simulation and real-time experiments. Various scenarios have been presented with static and dynamic obstacles, using one and multiple robots while avoiding obstacles in different shapes and sizes. The proposed methodology reduced the traveled distance of the mobile robot, as well as minimized the energy consumption and the distance between the robot and the obstacle detected as compared to a non-fuzzy logic approach

    Utility-Oriented Placement of Actuator Nodes with a Collaborative Serving Scheme for Facilitated Business and Working Environments

    Get PDF
    Places to be served by cyber-physical systems (CPS) are usually distributed unevenly over the area. Thus, different areas usually have different importance and values of serving. In other words, serving power can be excessive or insufficient in practice. Therefore, actuator nodes (ANs) in CPS should be focused on serving around points of interest (POIs) with considerations of “service utility.” In this paper, a utility-oriented AN placement framework with a collaborative serving scheme is proposed. Through spreading serving duties among correctly located ANs, deployment cost can be reduced, utility of ANs can be fully utilized, and the system longevity can be improved. The problem has been converted into a binary integer linear programming optimization problem. Service fading, 3D placements, multiscenario placements, and fault-tolerant placements have been modeled in the framework. An imitated example of a CPS deployment in a smart laboratory has been used for evaluations.published_or_final_versio

    Fault-tolerant control policies for multi-robot systems

    Get PDF
    Throughout the past decade, we have witnessed an active interest in distributed motion coordination algorithms for networked mobile autonomous robots. Often, in multi-robot systems, each robot executing a coordination task is a little cost, a disposable autonomous agent that has ad-hoc sensing or communication capability, and limited mobility. Coordination tasks that a group of multiple mobile robots might perform include formation control, rendezvous, distributed estimation, deployment, flocking, etc. Also, there are challenging tasks that are more suitable for a group of mobile robots than an individual robot, such as surveillance, exploration, or hazardous environmental monitoring. The field has been collectively investigated by many researchers in robotics, control, artificial intelligence, and distributed computing. However, relatively little work has been done on developing algorithms to provide resilience to failures that can occur. The problem is extremely difficult to handle in that any partial failure of a robot is not readily detectable. Some failures in robot resources can have an adverse effect on not only the performance of the robot itself, but also other robots, and the collective task performance as well. This study presents the development of fault-tolerant distributed control policies for multi-robot systems. We consider two problems: rendezvous and coverage. For the former, the goal is to bring all robots to a common location, while for the latter the goal is to deploy robots to achieve optimal coverage of an environment. We consider the case in which each robot is an autonomous decision maker that is anonymous (i.e., robots are indistinguishable to one another), memoryless (i.e., each robot makes decisions based upon only its current information), and dimensionless (i.e., collision checking is not considered). Each robot has a limited sensing range and can directly estimate the state of only those robots within that sensing range, which induces a network topology for the multi-robot system. We assume that it is not possible for the fault-free robots to identify the faulty robots (e.g., due to the anonymous property of the robots). For each problem, we provide an efficient computational framework and analysis of algorithms, all of which converge in the face of faulty robots under a few assumptions on the network topology and sensing abilities. A suite of experiments and simulations confirm our theoretical analysis and demonstrate that our proposed algorithms are useful in fault-prone multi-robot systems
    • …
    corecore